CLIMATE REFERENCE STATION SASKATOON

ANNUAL SUMMARY 2010
C. Beaulieu
V. Wittrock
Saskatchewan Research Council
Environment and Forestry Division

smart science solutions
SRC Publication No. 10440-1E11
March 2011

Saskatchewan Research Council

CLIMATE REFERENCE STATION SASKATOON

ANNUAL SUMMARY 2010

C. Beaulieu
V. Wittrock
Saskatchewan Research Council
Environment and Forestry Division

Saskatchewan Research Council
125-15 Innovation Blvd.
Saskatoon, SK S7N 2X8

TABLE OF CONTENTS

Acknowledgements iv
Climate Reference Station Sponsors iv
Climate Reference Station History 1
What is the Climate Reference Station? 2
Activities Associated with the Climate Reference Station 3
Summary Overview 4
Temperature
Daily temperature graph 5
Temperature records table. 6
Extreme temperatures table 6
Dates and duration of the frost-free season tables 6
Hourly annual temperature 7
Frost-free season duration, end points and total number of days graphs 7
Temperature rankings, annual and seasonal table 8
Monthly temperatures, normals, and extremes table 10
Monthly and annual temperatures graphs 10
Seasonal temperatures graphs 11
Annual days with temperatures greater than a set point graph 12
Annual days with temperatures less than a set point graph 13
Annual days with temperatures greater than $0^{\circ} \mathrm{C}$ (thaw days) graph 14
Potential Evapotranspiration (PE) using the Thornthwaite Method graph and table 14
Degree-days, normals and cumulative table 15
Growing degree-days, annual and monthly graphs 15
Heating degree-days, annual and monthly graphs 16
Cooling degree-days, annual and monthly graphs 17
Extreme cooling degree-days, annual graph 17
Precipitation
Daily precipitation graph 18
Precipitation rankings by dry spells/days table 19
Monthly ranking by driest month table. 19
Precipitation records and extreme events tables. 19
Monthly precipitation, normals and extremes table 20
Monthly and annual precipitation graphs. 20
Seasonal precipitation graphs 21
Monthly precipitation days table 22
Monthly and annual precipitation days graphs 22
Seasonal precipitation days graphs 23
Precipitation rankings, annual and seasonal, by driest year and no. of days 24
Snow-on-the-ground precipitation graphs 25
Radiation
Sunrise/Sunset tables for Saskatoon, 2010 \& 2011 26
Monthly bright sunshine hours, normals and days table 27
Daily global and diffuse values table 27
Annual, seasonal and monthly bright sunshine hours graphs 28
Annual, and seasonal bright sunshine days graphs 29
Monthly bright sunshine, global and diffuse radiation comparison graph 29
Bright sunshine rankings by $\%$ of actual to possible hours and by no. of days tables 30
Wind
Monthly average and highest instantaneous wind speed table 31
Annual wind roses 31
Average monthly wind speed by direction roses 32
Average monthly wind frequency by direction roses 33
Extreme daily winds table 34
Windchill calculation table 34
Daily windchill values table 34
Soil Temperatures
Monthly average and normal soil temperatures at 0900hrs and 1600hrs table 35
Monthly average and normal soil temperatures at 0900hrs and 1600hrs graphs 35
Annual weather summary of elements 36
Monthly weather summaries of elements 37
Instruments used at Saskatoon SRC CRS and Glossary of Terms 49
References and Bibliography 52

ACKNOWLEDGEMENTS

The 2010 data was compiled and recorded by Carol Beaulieu with assistance from Virginia Wittrock, Evan Siemens and Dawn Bolin. Miss Beaulieu was responsible for the monitoring of the site while instrument maintenance was carried out by the personel of the Alternative Energy \& Manufacturing/Development Engineering of the Saskatchewan Research Council (SRC). Virginia Wittrock and Elaine Wheaton assisted with the proofreading and editing of this report. Consultations with Larry Flysak of the Meteorological Service of Canada (MSC), Saskatoon, SK, were most helpful in verifying and comparing data.

This report is being provided for informational purposes only. While the Saskatchewan Research Council believes this report to be accurate, it may contain errors or inaccuracies. SRC assumes no responsibility for the accuracy or comprehensiveness of this data and reliance on this data is entirely at the user's own risk.

Please be aware that our data is subject to ongoing quality assurance reviews that may result in minor changes and updates to some values in our reports, including past reports. If you notice errors in our reports, please contact us so that we may correct them.

Information and data contained in this report shall not be published, copied, placed in a retrieval system or distributed whole or in part without prior written consent of the Saskatchewan Research Council. All references made to this report shall be acknowledged.

Enquiries concerning the SRC Climatological Reference Station (CRS), its data, measurement programs and publications, or becoming a sponsor are most welcome. For further information contact:

Elaine Wheaton Distinguished Research Scientist
306-933-8179
e-mail wheaton@src.sk.ca
Virginia Wittrock
Research Scientist 306-933-8122
e-mail wittrock@src.sk.ca

Carol Beaulieu
Research Technologist 306-933-8182
e-mail beaulieu@src.sk.ca

Climatology Section
Fax 306-933-7817
Saskatchewan Research Council
Web Site Home Page
http://www.src.sk.ca

SASKATCHEWAN RESEARCH COUNCIL CLIMATE REFERENCE STATION SPONSORS, 2010 WE GRATEFULLY ACKNOWLEDGE THE SUPPORT OF THE FOLLOWING:

4 SaskPower

Ministry of
Energy and
Resources

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Saskatchewan Ministry of
Agriculture

Saskatchewan
Watershed Authority

CLIMATE REFERENCE STATION HISTORY

Meteorological observations at or near Saskatoon were first taken by the Royal Northwest Mounted Police in 1889 with the recording of temperature. There is some disagreement in the early records as to the exact location of the weather observing point, but the majority of the evidence indicates $52^{\circ} 15^{\prime} \mathrm{N}, 106^{\circ} 20^{\prime} \mathrm{W}$, elevation 480 m above sea level as the most probable location. This would place it at Clark’s Crossing on the South Saskatchewan River, approximately 16 km northeast of the centre of the City of Saskatoon. At that time, there was a settlement at Clark's Crossing as well as 10 to 15 families on either side of the river where Saskatoon is now located.

Little is known about the very early observers; however, the records do show that Major T.H. Keenan took observations from March 1892 until March 1895, and Mr. George Will was the observer from January 1897 until April 1897. It is thought that T. H. Copeland was involved in the observational programme from 1895 to May 1, 1901, at which time it was taken over by Mr. Eby, Sr. Mr. Eby, Sr. recorded the observations until his death in 1921, at which time his daughter, Miss E.S. Eby, continued to record the observations. Her brother, Mr. J.M. Eby, recorded the observations beginning in April 1931 until the station was closed October 31, 1942. The Eby station recorded temperature, precipitation and weather notes on fog, thunderstorms, winds and any unusual weather phenomena. Reports were made twice daily, morning and evening.

In 1916, a climatological station was established by the Physics Department of the University of Saskatchewan and continuous observations were kept twice daily until January 15,1965 . The longtime observer was Mr. Sidney Cox. The Saskatchewan Research Council took over the programme in the fall of 1963 at the newly established Climatological Reference Station at latitude $52^{\circ} 09^{\prime} \mathrm{N}$, longitude $106^{\circ} 36^{\prime} \mathrm{W}$ and elevation $497 \mathrm{~m} \mathrm{asl}^{1}$. The first observer was Terry Beck followed three years later by Orville Olm. ${ }^{2}$ In 1967, Joe Calvert became the primary observer until his retirement in 1983. Ray Begrand succeeded Mr. Calvert until 1988 when Virginia Wittrock became the primary observer. Since 1992, the primary observer has been Carol Beaulieu assisted by Virginia Wittrock.

In the summer of 1992, the CRS began to be converted to an automated system of data collection with the installation of a Campbell Scientific data logger and automatic sensors. Elements presently recorded at the site are temperature, precipitation, wind, solar radiation, relative humidity, barometric pressure, soil temperature and snow-on-the-ground (manual recordings). Temperature, precipitation and bright sunshine data are submitted to Environment Canada. ${ }^{1}$ Christiansen 1970; Environment Canada 1975; ${ }^{2}$ Olm 2001

> Nlu. James Eby was one of the original members of the Temperence Colony Society. He filed his homestead in 1882 and returned with his family in 1883. He was the first president of the school board and served as the township supervisor for Natara. While riding a horse in 1890, he was struck by lightning and was a partial invalid thereafter. In 1901, he and his daughter moved to Nutana and James served as a Federal Meteorologist for the next 20 years until hisdeath in 1921 at the age of 77. He was buried, next to his wife, in the Natara pioncer cemetery.'

${ }^{1}$ Ladd, 2008

photo credit: CR Beaulieu

WHAT IS THE CLIMATE REFERENCE STATION?

The Saskatchewan Research Council's Climate Reference Station (SRC CRS) at Saskatoon is classified as a principal climatological station with supplementary climatological observations. ${ }^{1}$ A reference climatological station's data are intended for the purpose of determining climatic trends. This requires long periods (not less than thirty years) of homogeneous records, where man-made environmental changes have been or are expected to remain at a minimum. Ideally the records should be of sufficient length to enable the identification of secular changes of climate ${ }^{2}$. At our station, half-hourly readings are taken of elements which include temperature, precipitation amount, humidity, wind, and atmospheric pressure. Our supplemental observations include rate of rainfall, soil temperature, bright sunshine and solar radiation. High quality and consistent climatological observations are maintained providing data sets to meet the current concerns of the effects of climatic change and increased variability.

Purpose and Benefits

The purpose of the SRC CRS is to provide a record of observed meteorological elements so that the climate of the area and its changes can be accurately documented and described. Climatological data have assumed new importance as a result of social and environmental issues in which climate is a dominant factor. Climatological information assists in realizing new technological opportunities and social changes. It is necessary and valuable for areas such as agriculture, forestry, land use and facility placement, water and energy resources, health and comfort.

The CRS also allows us to:

- evaluate long term climate trends - early warning system for increased frequencies of extreme events such as drought, floods, etc.;
- determine the impacts of climate events on society, economy, health, and ecosystems - e.g. intense rainfall causing flooding and property damage, heat stress with its implications for health;
- do value-added research;
- be part of regional, national and global networks in an important agricultural and ecological area;
- facilitate development of additional programs - e.g. air quality, biodiversity, and climate change monitoring;
- have roles in various programs within SRC including spray drift work, Boreal Ecosystem Atmosphere Study (BOREAS), and collaborative research with the Western College of Veterinary Medicine and the College of Agriculture, University of Saskatchewan, for example; and
- provide climate data to accident studies, agricultural sectors, authors, building science, chemical companies, construction firms, governments, insurance agencies, lawyers, media, recreation facilities, schools, tourism groups, transportation studies, universities, wildlife studies, and interested individuals.

Goals

The goals of the Climate Reference Station are first, to maintain the high quality of data gathered over its more than forty-five years of existence at its current location and, second, to continue to monitor a large variety of elements. These various elements combined with the long-term collection period as well as the stable location allow CRS to be an extremely valuable climate information collection station.

ACTIVITIES ASSOCATED WITH THE CLIMATE REFERENCE STATION, 2010

St. Michael Community School hosted the sixth annual SPLIT programme (Schools Plant Legacy in Trees) and requested a presentation on climate for their kindergarten to grade 8 participants. Approximately 110 students received hands-on experience with the weather instruments or a computer presentation highlighting Saskatoon's climate; past, present and future and why consideration of the climate is necessary for the planning of the urban landscape. The rural school of Cory Park again requested a presention for their 23 children, grades $3 / 4$, studing the climate of the area. A presentation for Brownell School, grades 2 to 3, was given for 19 students.

New soil temperature probes, at seven depths, were installed in the spring/summer of 2009. We have been receiving temperature data from these sensors and will be bringing this data on-line in 2011. The delay in publishing the soil temperature data was to allow the soil to settle around the probes for the most accurate of reading as possible.

photo credit: CR Beaulieu, April 2010

SUMMARIES FOR 2010

 Overview

 Overview}Data concerning temperature, precipitation, wind speed and direction, bright sunshine, solar radiation, and soil temperatures, recorded at the Saskatchewan Research Council (SRC) Climate Reference Station (CRS) ($52^{\circ} 09^{\prime} \mathrm{N}, 106^{\circ} 36^{\prime} \mathrm{W}, 497 \mathrm{~m}$ asl), are presented for the year 2010 and compared with the long-term (circa 1900-2009) and standard-period/normal (1971-2000) records.

2010 was a case of 'you should be careful what you wish for as you might just get it'. Up until April $13^{\text {th }}$, it was feared another severe drought year was looming with cumulative precipitation values rivaling those of 2001; the driest year recorded at the station. On April $13^{\text {th }}$, the skies opened and the deluge began with 41.8 mm of rain over nineteen hours. By the end of August the cumulative precipitation was above the 1991 annual record of 546.9 mm . The inundation finished with a September drenching of over 100mm. By December 31 ${ }^{\text {st }}$, a new annual record had been established at 707.4 mm for any Saskatoon stations since recording started around $1900 .{ }^{1}$ The number of rain events totalling amounts of at least 10 mm or 25 mm was 21 and 7 respectively. The torrent ended as it began with 44.2 mm on September $10^{\text {th }}$.

With precipitation hogging all of the attention, temperature was regulated to an "also ran" status. The year began with above normal temperatures for January, March and April then the maximum temperatures fell slightly below normal while the minimums continued to be slightly above. The annual mean temperature just made it into the top ten warmest years; coming in at $9^{\text {th }}$ place. Spring temperatures were high with the minimum, at $0.2^{\circ} \mathrm{C}$, being the second warmest spring recorded at the station. Extreme maximum temperature records occurred nine times with seven occurring during the spring. No record extreme low temperatures were measured. Cold and hot spells, where the temperature must be equal or less/greater than $-30^{\circ} \mathrm{C} / 30^{\circ} \mathrm{C}$ tied at three days apiece with no $-40^{\circ} \mathrm{C}$ recorded. The growing season began on May $8^{\text {th }}$ and ended on September $16^{\text {th }}$ for a respectable 132 days.

High winds and low temperatures combined to produce high risk wind chill values on 15 occasions. The year began with the highest wind chill value of -51 due to a temperature of $-35^{\circ} \mathrm{C}$ and a wind speed of $10 \mathrm{~km} / \mathrm{h}$. Average wind speeds for 2010 were between 10 and $18 \mathrm{~km} / \mathrm{h}$. Extreme wind speeds, over $70 \mathrm{~km} / \mathrm{h}$, blasted during the months of March, April, May, June and July. The April 'storm' winds of $91 \mathrm{~km} / \mathrm{h}$ produced blizzard-like conditions even with the minimal amount of snow remaining on the ground and the 5 cm of accompanying snow fall. Prevailing winds were from the southeast followed by west-northwest.

Above normal bright sunshine hours were recorded only for July, September, October and possibly January (estimated value). The year ended with totals for sunshine hours and days near normal. Overall the annual bright sunshine totaled 2272.8 hours for 316 days.

[^0]DAILY TEMPERATURE

TEMPERATURE

EXTREME TEMPERATURES				
COLD SPELL				
(less than or equal to $-30^{\circ} \mathrm{C}$)	HOT SPELL (greater than or equal to $30^{\circ} \mathrm{C}$)			
DATE	TEMPERATURE ${ }^{\circ} \mathrm{C}$	DATE	TEMPERATURE ${ }^{\circ} \mathrm{C}$	
January 1	-35.2	May 19	30.0	
January 7	-32.1	August 19	30.8	
February 8	-30.3	August 26	33.6	

DATES \& DURATION OF THE FROST-FREE SEASON

YEAR	LAST SPRING FROST	FIRST FALL FROST	Frost-free Season Length
1964	May 31	Sept 26	117
1965	May 27	Sept 05	100
1966	May 19	Sept 13	116
1967	Jun 06	Sept 23	108
1968	May 19	Sept 25	128
1969	Jun 14	Sept 15	92
1970	May 19	Sept 12	115
1971	May 18	Sept 20	124
1972	May 08	Sept 04	118
1973	May 06	Sept 14	130
1974	May 25	Sept 02	99
1975	May 21	Sept 11	112
1976	May 06	Aug 28	113
1977	May 01	Aug 31	121
1978	May 30	Sept 30	122
$1971-2000$	May 30	Aug 13	74
Normal	May	May 05	Sept 14

photo credit: CR Beaulieu, April 2010

TEMPERATURE

Total Number of Frost-free Days (Minimum Temperature $>\mathbf{0}^{\circ} \mathrm{C}$)

TEMPERATURE RANKINGS

ANNUAL AVERAGE TEMPERATURES ${ }^{\circ} \mathrm{C}$						SEASONAL MAXIMUM AVERAGE TEMPERATURES ${ }^{\circ} \mathrm{C}$							
MAXIMUM TEMP ${ }^{\circ} \mathrm{C}$		MINIMUM TEMP ${ }^{\circ} \mathrm{C}$		MEAN TEMP ${ }^{\circ} \mathrm{C}$		WINTER (DJF)		SPRING (MAM)		SUMMER (JJA)		AUTUMN (SON)	
1987	11.6	1987	-0.8	1987	5.4	1987	-3.6	1977	12.9	2001	26.5	1987	13.1
2001	10.8	2006	-1.3	2001	4.6	2006	-4.7	1987	12.7	2003	26.3	2009	12.1
1981	10.5	1999	-1.4	1981	4.5	1998	-4.8	1988	12.6	1984	26.1	1994	11.8
1988	10.1	2010	-1.5	1998	4.3	2000	-5.4	1981	12.1	1988	26.0	2001	11.8
1998	10.1	1981	-1.5	1999	4.2	1992	-5.7	1998	12.0	1970	25.9	2008	11.8
1999	9.8	1998	-1.5	2006	4.2	2002	-6.0	2001	11.9	2006	25.6	1999	11.4
2006	9.6	2005	-1.6	1988	3.9	1964	-6.6	1994	11.5	1998	25.6	1981	11.1
1976	9.5	2001	-1.6	2005	3.8	1983	-7.1	2010	11.4	1997	25.6	1997	11.0
1997	9.5	2007	-2.2	2010	3.7	1988	-7.2	1993	11.4	1981	25.3	2005	11.0
2003	9.3	1988	-2.3	1997	3.5	2004	-7.2	1980	11.3	1989	25.3	1976	10.8
2005	9.1	1997	-2.4	2003	3.4	1986	-7.3	1986	11.1	2002	25.3	1980	10.8
1986	9.0	2003	-2.5	1991	3.2	1976	-7.3	2000	11.0	1983	25.0	1974	10.6
1991	8.9	1993	-2.5	1986	3.2	1981	-7.4	1992	10.8	1996	24.9	1979	10.6
2010	8.9	1991	-2.5	2007	3.2	1977	-7.4	1991	10.5	1991	24.8	2004	10.5
2000	8.8	1992	-2.5	1976	3.0	2007	-7.7	1976	10.4	1964	24.6	1998	10.4
1984	8.7	1986	-2.6	1992	3.0	2003	-8.0	1984	10.2	2008	24.5	1967	10.4
1990	8.7	2004	-2.8	2000	3.0	2005	-8.0	1999	10.1	2007	24.5	2000	10.3
1977	8.6	2002	-2.9	1984	2.9	1975	-8.0	2007	10.1	1979	24.5	1988	10.3
1980	8.6	1984	-2.9	1993	2.8	1999	-8.0	2006	10.1	1995	24.4	1975	9.9
2007	8.6	2000	-2.9	2004	2.8	1984	-8.1	1968	10.0	1967	24.3	1989	9.8
1992	8.5	1964	-2.9	2002	2.8	1995	-8.1	2004	10.0	1978	24.2	2007	9.8
2008	8.5	1994	-3.2	1964	2.7	1990	-8.2	1985	10.0	1965	24.2	1990	9.7
2002	8.5	1983	-3.2	1994	2.7	1991	-8.6	1990	10.0	1969	24.1	1968	9.7
1994	8.5	2008	-3.3	2008	2.6	1989	-8.7	2005	9.9	1990	24.1	2010	9.6
2004	8.4	1995	-3.4	1990	2.6	2001	-9.3	1973	9.9	1987	24.0	2003	9.4
1989	8.3	1968	-3.4	1977	2.5	1970	-9.3	1978	9.7	1972	24.0	1970	9.3
1964	8.2	1976	-3.5	1980	2.4	1980	-9.5	2003	9.4	1976	23.8	1983	9.2
1993	8.1	1990	-3.6	1989	2.3	2010	-9.8	2008	9.1	1973	23.8	1992	8.8
1995	7.9	1977	-3.6	1995	2.3	1968	-9.8	1972	9.1	2000	23.8	1971	8.8
1973	7.8	1989	-3.8	1983	2.2	2008	-10.1	1971	8.6	1971	23.6	1964	8.8
1968	7.7	1980	-3.8	1968	2.2	1973	-10.3	1969	8.3	1986	23.6	1978	8.7
2009	7.7	2009	-3.8	2009	2.0	1997	-11.0	1995	8.3	1994	23.5	1977	8.7
1983	7.7	1973	-4.0	1973	1.9	1967	-11.1	1989	8.2	1980	23.5	1966	8.6
1978	7.4	1970	-4.0	1970	1.7	1993	-11.5	1964	8.2	1975	23.2	1995	8.6
1970	7.3	1978	-4.6	1978	1.4	1985	-11.6	1966	8.1	1999	23.1	1993	8.4
1974	7.1	1969	-4.6	1971	1.2	2009	-11.7	1997	7.6	2010	23.0	1982	8.3
1971	7.1	1971	-4.6	1974	1.2	1994	-12.1	2009	7.4	1977	23.0	1969	8.0
1967	7.0	1974	-4.7	1967	1.1	1996	-12.2	1983	7.0	2009	22.9	2002	7.8
1985	6.9	1967	-4.7	1969	1.1	1974	-12.6	1982	6.7	1966	22.8	2006	7.5
1975	6.9	1985	-4.8	1985	1.1	1966	-13.1	1996	6.3	1982	22.6	1986	7.3
1969	6.8	1972	-4.8	1975	0.9	1982	-13.3	1970	6.1	2005	22.6	1965	7.3
1979	6.5	1975	-5.1	1972	0.6	1971	-13.4	2002	5.8	1985	22.4	1973	7.3
1966	6.4	1996	-5.2	1979	0.6	1978	-14.5	1965	5.7	1974	22.4	1991	7.0
1965	6.3	1965	-5.3	1965	0.5	1965	-14.8	1979	4.8	1992	22.4	1972	6.6
1982	6.2	1982	-5.3	1966	0.4	1972	-14.9	1974	4.7	1968	22.0	1996	6.2
1996	6.1	1979	-5.3	1996	0.4	1969	-15.2	1975	4.4	2004	21.6	1984	5.6
1972	6.1	1966	-5.5	1982	0.4	1979	-15.5	1967	4.4	1993	21.1	1985	4.5

TEMPERATURE RANKINGS

SEASONAL MINIMUM AVERAGE TEMPERATURES ${ }^{\circ} \mathrm{C}$							
WINTER (DJF)		SPRING (MAM)		SUMMER (JJA)		AUTUMN (SON)	
2006	-13.2	1993	0.3	2006	12.5	2009	1.3
1998	-13.4	2010	0.2	2003	12.5	2005	0.4
1987	-13.6	1987	-0.2	1988	12.3	2008	0.1
1992	-14.9	1977	-0.5	1970	12.3	1998	0.1
1964	-15.0	1999	-0.5	2002	12.2	1981	0.0
2002	-15.5	1985	-0.7	1991	12.2	2001	-0.1
1983	-15.6	1994	-0.8	2001	11.7	1967	-0.2
2000	-15.8	1981	-1.0	2007	11.7	1968	-0.2
2004	-16.7	1992	-1.0	1989	11.6	1997	-0.3
1999	-16.8	2006	-1.0	1998	11.6	1987	-0.3
2007	-17.0	1988	-1.0	2010	11.5	2004	-0.4
1981	-17.1	1986	-1.1	1997	11.5	1994	-0.5
1995	-17.2	2000	-1.1	2008	11.3	1999	-0.6
1986	-17.3	2001	-1.2	1984	11.2	1992	-0.7
2003	-17.5	2007	-1.3	1996	11.2	2010	-0.7
1988	-17.8	2005	-1.4	1983	11.2	1980	-0.9
1976	-17.8	1990	-1.5	1964	11.0	1983	-1.0
1984	-17.8	1973	-1.7	2005	11.0	1970	-1.1
2005	-17.8	1978	-1.7	1972	11.0	2007	-1.1
1975	-18.5	1991	-2.0	2000	11.0	1964	-1.4
1970	-18.7	1968	-2.0	1981	10.9	1988	-1.4
1977	-18.8	1998	-2.0	1995	10.8	1979	-1.4
1989	-18.9	1984	-2.2	1990	10.7	2000	-1.7
2001	-19.0	2003	-2.3	1999	10.7	1989	-1.8
2010	-19.1	1972	-2.4	1987	10.6	1969	-1.9
1990	-19.1	2004	-2.5	1994	10.6	1971	-2.1
1991	-19.3	1980	-2.6	1965	10.5	2002	-2.2
2008	-19.5	2008	-3.2	1976	10.5	2003	-2.2
1980	-19.6	1976	-3.3	1971	10.3	1977	-2.4
1968	-20.0	1983	-3.7	2009	10.3	1974	-2.4
1973	-20.3	1969	-3.8	1973	10.0	1975	-2.5
1993	-20.5	1995	-3.8	1979	10.0	1993	-2.5
1994	-20.8	1966	-3.9	1966	9.9	1995	-2.6
1967	-21.1	1964	-3.9	1993	9.9	1972	-2.7
1997	-21.3	1971	-4.0	1975	9.8	2006	-2.8
2009	-21.4	1997	-4.3	2004	9.7	1978	-2.9
1996	-21.9	1982	-4.3	1978	9.7	1986	-3.1
1974	-22.6	1989	-4.3	1980	9.6	1990	-3.4
1985	-22.9	1996	-4.9	1982	9.6	1976	-3.6
1971	-23.1	1970	-5.0	1986	9.6	1982	-3.7
1982	-23.6	2009	-5.6	1974	9.6	1991	-3.7
1966	-23.6	1965	-5.8	1967	9.5	1984	-3.8
1969	-24.0	1979	-6.1	1969	9.4	1966	-4.3
1965	-24.0	1974	-6.5	1968	9.2	1996	-4.3
1978	-24.5	1975	-6.5	1992	8.8	1965	-4.4
1972	-25.0	1967	-6.9	1977	8.8	1973	-4.6
1979	-25.2	2002	-7.6	1985	8.2	1985	-6.0

SEASONAL MEAN AVERAGE TEMPERATURES ${ }^{\circ} \mathrm{C}$							
WINTER (DJF)		SPRING (MAM)		SUMMER (JJA)		AUTUMN (SON)	
1987	-8.6	1987	6.2	2003	19.4	2009	6.7
2006	-8.9	1977	6.2	1988	19.2	1987	6.4
1998	-9.1	1993	5.8	2001	19.1	2008	5.9
1992	-10.3	2010	5.8	1970	19.1	2001	5.8
2000	-10.6	1988	5.8	2006	19.1	2005	5.7
2002	-10.8	1981	5.6	2002	18.8	1994	5.7
1964	-10.8	1994	5.4	1984	18.7	1981	5.5
1983	-11.4	2001	5.4	1998	18.6	1999	5.4
2004	-12.0	1986	5.0	1997	18.5	1997	5.4
1981	-12.3	1998	5.0	1991	18.5	1998	5.3
1986	-12.3	1992	4.9	1989	18.5	1967	5.1
2007	-12.4	2000	4.9	1983	18.1	2004	5.0
1999	-12.4	1999	4.8	1981	18.1	1980	5.0
1988	-12.5	1985	4.7	2007	18.1	1968	4.8
1976	-12.6	2006	4.5	1996	18.1	1979	4.6
1995	-12.7	2007	4.4	2008	17.9	1988	4.4
2003	-12.7	1980	4.4	1964	17.8	2010	4.4
2005	-12.9	1991	4.3	1995	17.7	2007	4.4
1984	-13.0	2005	4.3	1972	17.5	2000	4.3
1977	-13.1	1990	4.3	2000	17.4	1970	4.2
1975	-13.3	1973	4.1	1990	17.4	1974	4.1
1990	-13.7	1978	4.0	1965	17.4	1983	4.1
1989	-13.8	1968	4.0	1987	17.3	1992	4.1
1991	-14.0	1984	4.0	1979	17.3	1989	4.0
1970	-14.0	2004	3.8	1976	17.2	1975	3.8
2001	-14.2	2003	3.6	2010	17.2	1964	3.7
2010	-14.5	1976	3.5	1994	17.1	1976	3.6
1980	-14.6	1972	3.4	1978	17.0	2003	3.6
2008	-14.8	2008	2.9	1971	17.0	1971	3.4
1968	-15.0	1971	2.3	1973	17.0	1977	3.2
1973	-15.4	1969	2.2	1999	16.9	1990	3.2
1993	-16.0	1995	2.2	1967	16.9	1969	3.1
1967	-16.1	1964	2.2	2005	16.8	1995	3.0
1997	-16.2	1966	2.1	1969	16.7	1978	2.9
1994	-16.5	1989	2.0	1986	16.6	1993	2.9
2009	-16.6	1997	1.7	2009	16.6	2002	2.8
1996	-17.1	1983	1.6	1980	16.6	2006	2.4
1985	-17.3	1982	1.2	1975	16.5	1982	2.3
1974	-17.6	2009	0.9	1966	16.4	1966	2.2
1971	-18.3	1996	0.7	1982	16.2	1986	2.1
1966	-18.4	1970	0.5	1974	16.0	1972	1.9
1982	-18.5	1965	-0.1	1977	15.9	1991	1.6
1965	-19.4	1979	-0.7	2004	15.7	1965	1.5
1978	-19.5	1974	-0.9	1992	15.6	1973	1.3
1969	-19.6	2002	-0.9	1968	15.6	1984	0.9
1972	-20.0	1975	-1.0	1993	15.5	1996	0.9
1979	-20.4	1967	-1.3	1985	15.3	1985	-0.8

TEMPERATURE

Annual Temperatures

SEASONAL TEMPERATURES for 1964 to 2010

SRC Publication No. 10440-1E11

ANNUAL DAYS WITH TEMPERATURES GREATER THAN A SET POINT

Days With Temperatures $32^{\circ} \mathrm{C}$ or Greater

Days With Temperatures $35^{\circ} \mathrm{C}$ or Greater

ANNUAL DAYS WITH TEMPERATURES LESS THAN A SET POINT

Days With Temperatures Minus $35^{\circ} \mathrm{C}$ or Less

Days With Temperatures Minus $40^{\circ} \mathrm{C}$ or Less

ANNUAL DAYS WITH TEMPERATURES GREATER THAN $0^{\circ} \mathrm{C}$ (THAW DAYS)

January ${ }^{\text {st }}$ to December 31 ${ }^{\text {st }}$

October to March (Cold Season)

POTENTIAL EVAPOTRANSPIRATION (PE) using the Thornthwaite Method ${ }^{1}$

MONTH	$\begin{gathered} \text { PE (mm) } \\ 2010 \end{gathered}$	$\begin{gathered} \text { PE (mm) } 1991 \\ \text { Previous } \\ \text { Wettest Year } \end{gathered}$	$\begin{gathered} \text { PE (mm) } \\ 2001 \\ \text { Driest Year } \end{gathered}$	$\begin{gathered} \text { PE }(\mathrm{mm}) \\ 1987 \\ \text { Hottest } \\ \text { Year } \end{gathered}$	$\begin{gathered} \text { PE }(\mathrm{mm}) \\ 1971- \\ 2000 \\ \text { Normal } \end{gathered}$
Jan					
Feb					
Mar	0.89				
Apr	46.5	37.5	28.6	55.5	28.6
May	77.0	81.3	86.8	101.4	81.5
June	118.8	116.8	109.3	135.0	113.2
July	130.2	126.7	140.6	132.5	128.9
Aug	114.6	131.3	132.4	99.2	113.3
Sept	66.1	64.8	78.1	82.1	64.9
Oct	40.1	5.4	14.8	27.3	24.3
Nov					
Dec					
Total	594.3	563.7	590.4	632.9	554.6
			${ }^{1}$ Thornthwaite and Mather 1955		
			SRC Public	tion No.	440-1E1

DEGREE-DAYS

MONTH	GROWING DEGREE-DAYS Base $5^{\circ} \mathrm{C}$			HEATING DEGREE-DAYS Base $18^{\circ} \mathrm{C}$			COOLING DEGREE-DAYS Base $18^{\circ} \mathrm{C}$			EXTREME COOLING DEGREEDAYS Base $\mathbf{2 4}^{\circ} \mathrm{C}$		
	2010	2010 Cumulative	Normal Cumulative	2010	2010 Cumulative	Normal Cumulative	2010	2010 Cumulative	Normal Cumulative	2010	2010 Cumulative	Normal Cumulative
January	0.0	0.0	0.0	930.4	930.4	1076.9	0.0	0.0	0.0	0.0	0.0	0.0
February	0.0	0.0	0.0	874.9	1805.3	1963.1	0.0	0.0	0.0	0.0	0.0	0.0
March	16.0	16.0	2.4	555.7	2361.0	2695.5	0.0	0.0	0.0	0.0	0.0	0.0
April	91.4	107.4	63.7	328.9	2689.9	3116.2	0.0	0.0	0.3	0.0	0.0	0.0
May	172.1	279.5	275.3	249.7	2939.6	3320.6	13.3	13.3	7.7	0.0	0.0	0.2
June	343.2	622.7	606.8	67.0	3006.6	3403.4	20.2	33.5	30.0	0.0	0.0	1.3
July	403.9	1026.6	1015.2	23.6	3030.2	3438.7	24.5	58.0	70.7	0.0	0.0	2.8
August	382.3	1408.9	1403.0	51.0	3081.2	3496.4	30.3	88.3	113.2	0.0	0.0	5.2
September	190.2	1599.1	1606.5	202.3	3283.5	3695.3	1.6	89.9	119.0	0.0	0.0	5.3
October	123.6	1722.7	1670.2	322.8	3606.3	4105.5	0.0	89.9	119.1	0.0	0.0	5.3
November	8.1	1730.8	1672.8	707.6	4313.9	4821.3	0.0	89.9	119.1	0.0	0.0	5.3
December	0.0	1730.8	1672.9	966.1	5280.0	5809.0	0.0	89.9	119.1	0.0	0.0	5.3

Growing Degree-days (base $5^{\circ} \mathrm{C}$)

DEGREE-DAYS

Heating Degree-days (base $18^{\circ} \mathrm{C}$)

Cumulative Heating Units

2010 Heating D-D (Base $18^{\circ} \mathrm{C}$)
2010 Cumulative Heating D-D (Base $18^{\circ} \mathrm{C}$)
------- Normal Cumulative Heating D-D (Base $18^{\circ} \mathrm{C}$)

photo credit: CR Beaulieu April 2010

DEGREE-DAYS

Cooling Degree-days (base $18^{\circ} \mathrm{C}$)

Extreme Cooling Degree-days (base $\mathbf{2 4}^{\circ} \mathrm{C}$)

DAILY PRECIPITATION

PRECIPITATION RANKINGS

RANKING BY DRY SPELLSIDAYS

Maximum Length of Dry Spell		Total number of Dry Days		AMOUNT (mm)		AMOUNT \% OF NORMAL	
1976	48	2001	282	Mar	0.8	Mar	4.9
1993	40	1964	280	Feb	4.9	Feb	36.8
2000	40	1984	278	Dec	8.5	Dec	46.4
1965	37	1988	275	Jan	10.4	Jan	57.1
1980	36	1965	271	Oct	14.3	Oct	87.2
1997	36	1966	267	Nov	28.2	July	163.1
2002	35	1986	267	Aug	74.6	Nov	190.5
1964	31	1997	267	Apr	81.1	Aug	206.1
1984	30	1981	266	July	94.6	June	247.4
2009	30	1987	266	Sept	108.6	May	302.9
2010	29	1967	265	May	134.2	Apr	343.6
1966	28	1994	264	June	147.2	Sept	369.4

photo credit: CR Beaulieu Jan 2010

PRECIPITATION

2010 PRECIPITATION RECORDS			
TYPE	DATE	$\begin{gathered} \text { NEW } \\ \text { RECORD } \end{gathered}$	OLD RECORD/year
Greatest Daily Precipitation (mm)	January 23	5.2	5.1/1976
	April 13	41.8	8.4/2003
	April 29	11.2	3.7/1990
	April 30	14.4	4.1/1979
	May 22	30.4	10.1/1986
	May 25	22.4	12.2/1967\&1977
	May 29	21.2	15.2/1982
	June 30	28.2	18.7/1991
	July 2	27.2	23.0/1990
	August 10	11.4	8.6/1980
	August 12	18.4	17.7/1991
	August 13	18.2	9.2/2008
	September 6	24.6	5.6/1978
	September 10	44.2	35.6/2005
	October 25	5.9	4.5/1984
	November 9	9.0	6.0/1995
	December 14	4.9	4.3/1964
Greatest Daily Ppt during the month	April 13	41.8	24.6 April 19, 1985
Least Daily Ppt during the Month (excluding 0 amount)	March 24	0.6	$\begin{gathered} \hline 0.6 \text { March } 17 \& 24, \\ 2008 \end{gathered}$
Greatest Monthly Precipitation (mm)	April	81.1	55.9/1985
Least Monthly Precipitation (mm)	March	0.8	2.4/2008
Wettest Season (mm)	Spring(MAM)	216.1	164.1/1977
	Summer(JJA)	316.4	269.4/2005
Wettest Year (mm)	2010	707.4	546.9/1991
Least number of Days with any Daily Precipitation	March	2	3/ 1990, 1994, 1996
Most number of Days with Daily Precipitation $>5 \mathrm{~mm}$	May	9	9/1977
Most number of Days with Daily Precipitation >10 mm	April	3	3/1991
	June	6	5/1966, 1970, 2005
	August	3	$\begin{gathered} \hline 3 / 1967,1968,1982 \\ 1988,2009 \\ \hline \end{gathered}$
Most number of Days with Daily Precipitation >25 mm	April	1	0
	September	2	2/2005
Most number of Days with Seasonal Precipitation	Summer (JJA)	45	43/1978

EXTREME PRECIPITATION EVENTS (mm)*		
PERIOD	DATE	AMOUNT (mm)
*0.5 hour	June 30	26.6
*0.5 hour	June 29	24.4
*1 hour	June 29	29.4
*1 hour	June 30	27.6
*2 hours	June 29	31.6
*2 hours	June 30	28.2
*6 hours	June 29	33.0
*6 hours	May 22	28.4
*12 hours	September 10	41.0
*12 hours	April 13	33.4
*Daily	September 10	44.2
*Daily	April 13	41.8
*24 hours	June 29-30	61.2
*24 hours	September 9-10	48.4
Longest wet spell	April 28 to May 6	9 days / 45.4 mm
Longest wet spell	July 11 to July 16	6 days / 15.8 mm
Longest dry spell	February 19 to March 22	29 days
Longest dry spell	March 25 to April 7	15 days
${ }^{\text {receorded }}$ by tipping bucket April $12^{\text {rrh }}$ to October $15^{\text {th }}$		

PRECIPITATION

MONTH	MONTHLY PRECIPITATION (mm)				EXTREME VALUES (mm)					
	2010	NORMAL	$\underset{2010}{\text { CUMULATIVE }}$	\% OF CUMULATIVE NORMAL	CRS Maximum	CRS Minimum	SASKATOON CITY Maximum	SE	Saskatoon Eby	1901-1942
January	10.4	18.2	10.4	57.1	48.6/1969	2.6/2001	66.1/1911SE	us	University of	1915-1964
February	4.9	13.3	15.3	48.6	40.2/1979	2.5/1984	43.7/1924SE		Saskatchewan	
March	0.8	16.2	16.1	33.8	57.1/1967	$\begin{array}{r} \hline 2.4 / 1992, \\ 1994,2008 \\ \hline \end{array}$	59.0/1927SE	SWT	S'toon Water	1974-
April	81.1	23.6	97.2	136.3	55.9/1985	2.4/1988, 89	86.1/1955US			
May	134.2	44.3	231.4	200.2	145.3/1977	0.2/2002	178.0/1977SWT	S	Saskatoon	1941-1942
June	147.2	59.5	378.6	216.2	171.0/2005	13.0/1985	186.8/1942S	NRC	National Res.	1952-1966
July	94.6	58.0	473.2	203.0	125.9/1971	13.0/1984	162.9/1928SE		Council	
August	74.6	36.2	547.8	203.4	105.2/2007	7.0/2001	178.9/1954NRC	SRC	Sask. Research	1963-
September	108.6	29.4	656.4	219.8	128.4/2006	0.8/1995	128.4/2006SRC		Council	
October	14.3	16.4	670.7	212.9	69.8/1969	0.0/2000	69.8/1969SRC	SA	S'toon	1942-
November	28.2	14.8	698.9	211.9	48.2/1973	0.4/2009	57.3/1940SE		Diefenbaker	
December	8.5	18.3	707.4	203.2	43.0/1977	1.2/1997	59.2/1956SA		Intl. Airport	
Total	707.4	348.2								

Annual Precipitation

PRECIPITATION

MONTH	MONTHLY PRECIPITATION DAYS							
	$\mathbf{2 0 1 0}$					NORMAL	CUMULATIVE 2010	\% OF CUMULATIVE NORMAL
	9	11.3	9	79.6				
February	9	8.9	18	89.3				
March	2	9.0	20	68.6				
April	9	8.4	29	77.3				
May	17	9.8	46	97.2				
June	16	12.5	62	103.6				
July	17	12.0	79	109.9				
August	12	9.8	91	111.4				
September	11	8.4	102	113.2				
October	6	6.3	108	112.0				
November	13	7.9	121	116.0				
December	11	11.4	132	114.1				
Total	132	115.7						

Monthly Precipitation Days

Annual Precipitation Days

Autumn Precipitation Days

PRECIPITATION RANKINGS

ANNUAL RANKING BY DRIEST YEAR (mm)									
ANNUAL		WINTER (DJF)		SPRING (MAM)		$\begin{aligned} & \text { SUMMER } \\ & \text { (JJA) } \end{aligned}$		AUTUMN (SON)	
2001	165.8	2002	12.1	2009	19	1984	70.2	1999	17.2
1987	232.4	1984	19.2	2002	20.3	1964	73.9	1994	21
2003	257.7	2008	21.6	2008	29.8	1977	81.9	1976	21.8
1998	263.3	1993	22	1998	29.8	2001	91.2	1987	27.4
1981	279.8	1998	22.4	2001	34.0	1985	91.8	2001	28.5
1964	282.7	2010	22.5	1980	42.2	1987	92.6	2000	31.2
1988	285.7	2001	23.1	1965	43.2	1969	105.5	1972	32.3
1992	288.1	2003	29.2	1981	54.3	1992	115.6	1990	33.9
1997	291.4	2004	29.3	2004	55.4	1997	116.4	1971	34.2
1984	293.1	1987	30.6	1992	55.5	1980	120.3	1988	38.1
1999	297.7	1999	31.3	1988	55.6	1981	124.9	1974	40
1993	300.0	1995	31.3	1999	56.5	2003	126.2	2007	45.3
1980	305.9	2000	31.7	1984	57.2	1972	133.3	1975	48.8
1990	309.8	2006	32	1996	58.8	1998	133.4	2004	50
2008	313.8	1988	35.9	2000	59.2	1979	135.9	1966	50.2
2000	315.4	1982	37	1971	61.1	1967	139.9	1965	50.9
1972	317.9	1967	37.9	1966	61.2	1978	142.5	2003	51.2
2009	319.3	2009	38.8	2003	61.8	1975	144.5	1995	52.6
2002	320.0	1991	40.3	2005	62.1	1990	144.5	1979	53.4
1995	327.7	1983	41.1	1993	62.2	1988	148.9	1985	55.2
1985	330.6	1977	43.1	2007	64.7	1989	149.9	1970	56.4
1976	331.8	1994	45.1	1995	65.4	1993	151.0	2009	56.5
1996	340.6	2005	45.4	1970	65.7	1996	154.4	1981	61.4
1994	341.4	1964	47.9	1964	65.8	1973	156.1	1997	61.6
1979	352.0	1997	48	1969	68.5	1995	164.4	2008	64.4
1967	354.3	1996	51	1976	69.1	1994	165.6	1989	64.5
1978	358.1	1981	52.2	1972	71.6	1976	169.4	1977	65.4
1965	358.8	1985	52.3	1978	72.8	2000	183.8	1992	65.9
1977	370.5	1970	52.7	1973	73.1	2006	183.8	1980	66.6
1966	376.9	1968	53.8	1987	73.6	2008	191.2	1998	70
1989	384.8	1966	54.7	1967	78	1999	194.2	1968	71.3
1970	388.8	1992	55	1986	82.5	1986	196.2	2002	72.8
1975	392.3	1990	55.6	1990	87.2	1974	205.5	1993	73.1
1973	393.3	1986	57.2	1979	87.3	1965	206.6	1996	74.4
2004	404.5	1989	57.9	1997	88.2	2002	206.8	1967	76.8
1986	411.3	1971	60.4	1968	97.6	1982	208.4	1964	77.4
2007	413.9	1979	61.3	1989	101.7	2009	212.8	1982	81.5
1971	414.6	1978	63	2006	101.8	1983	215.8	1986	87.2
1969	427.4	1973	63.2	1994	109.4	1970	216.5	1973	88.2
1982	436.2	1975	67.3	1982	110.8	1966	222	1983	96.2
1968	443.1	1965	69.3	1975	119.6	1968	225.9	1991	105.4
1974	462.7	1976	69.5	1983	125.2	2007	231	2005	109.4
1983	471.6	1980	73	1985	134.3	1971	248.8	1978	111.4
2005	486.8	2007	74.7	1991	147.3	1991	251.6	2010	115.1
2006	517.5	1974	92.2	1974	148.0	2004	260	1984	137
1991	546.9	1972	92.2	1977	164.1	2005	269.4	1969	151.8
2010	707.4	1969	98.1	2010	216.1	2010	316.4	2006	203.4

ANNUAL RANKING BY DAYS WITH PRECIPITATION									
ANNUAL		WINTER (DJF)		SPRING (MAM)		SUMMER (JJA)		AUTUMN (SON)	
2001	84	2002	16	1964	14	1984	18	1976	9
1964	86	1984	18	1965	16	2001	23	1974	13
1984	88	1987	19	1966	18	1967	25	1999	13
1988	91	1995	21	1968	19	1985	25	1987	14
1965	94	1985	22	1988	19	2003	26	1997	14
1966	98	1988	23	1992	20	1969	27	1994	15
1986	98	1994	23	1994	20	1964	28	1966	17
1997	98	2001	23	2001	20	1970	28	1964	18
1967	100	1964	24	1967	21	1979	28	1990	18
1994	101	1993	24	1981	21	1998	28	1982	19
1987	102	1996	24	1978	22	1965	29	1988	19
1990	105	1968	25	1980	22	1971	31	2000	19
1968	106	1999	25	1986	22	1983	31	1995	20
1993	106	1966	26	1998	22	2007	31	1979	21
1998	106	1967	26	2002	22	1988	32	1968	22
1985	107	1986	26	1972	23	1990	32	1972	22
1995	107	2008	26	1976	23	1995	32	1993	22
1999	107	1965	27	1984	24	1968	33	2005	22
2002	107	1989	27	1996	24	1977	33	1971	23
1996	110	1990	27	2009	24	1992	33	1980	23
2003	110	1998	27	1985	25	1996	34	1986	23
1981	113	2004	29	2008	25	1997	34	2009	23
1976	115	2010	29	1970	26	1999	34	1965	24
1992	116	1992	30	1971	26	1966	35	1981	24
2000	118	1997	30	1973	26	1975	35	1996	24
2009	119	2000	30	1987	27	1980	35	1998	24
2008	121	2007	30	1990	27	1987	35	2001	24
1971	122	1977	31	1991	27	1993	35	1973	25
1980	123	1975	33	2010	28	2000	35	1975	25
1989	124	1991	33	1969	30	2006	35	2003	25
1970	126	2003	33	1989	30	1972	36	1967	27
1979	126	1982	34	1995	30	1989	36	2008	27
1973	127	1973	36	2003	30	2002	36	1985	28
1972	128	1980	36	2007	30	2008	36	1984	29
2007	128	1981	36	1977	31	2009	36	2002	29
1977	129	2006	36	1993	31	1986	37	1977	30
1975	130	2005	37	1999	31	1973	38	1991	30
1991	131	1970	40	1997	32	1974	38	2010	30
1983	132	1971	40	2000	32	1981	38	1989	31
2010	132	1978	40	1982	34	1976	39	1969	32
2005	135	1976	41	1975	35	2005	40	1970	32
1974	136	1983	41	1974	36	1994	41	1983	32
1982	136	2009	43	1983	36	1982	42	1992	33
1978	139	1972	48	2005	36	1991	42	2004	34
2006	139	1979	48	2006	36	2004	42	1978	36
1969	147	1974	57	1979	37	1978	43	2007	36
2004	158	1969	61	2004	44	2010	45	2006	38

SNOW-ON-THE-GROUND (SOG)

RADIATION

Sunrise/Sunset Tables for Saskatoon, 2010 \& 2011 ${ }^{1}$

2010	JANUARY		FEBRUARY		MARCH		APRIL		MAY		JUNE		JULY		AUGUST		SEPTEMBER		OCTOBER		NOVEMBER		DECEMBER	
Date	Rise	Set																						
1	9:15	17:05	8:47	17:54	7:52	18:46	6:41	19:41	5:36	20:32	4:52	21:18	4:50	21:30	5:28	20:57	6:18	19:54	7:08	18:44	8:02	17:38	8:53	16:58
2	9:15	17:06	8:45	17:56	7:50	18:48	6:39	19:43	5:34	20:34	4:51	21:19	4:51	21:30	5:29	20:55	6:20	19:51	7:09	18:42	8:04	17:36	8:54	16:57
3	9:15	17:08	8:43	17:58	7:48	18:50	6:36	19:44	5:32	20:35	4:50	21:20	4:52	21:29	5:31	20:53	6:21	19:49	7:11	18:39	8:06	17:34	8:56	16:57
4	9:15	17:09	8:42	18:00	7:45	18:52	6:34	19:46	5:31	20:37	4:50	21:21	4:53	21:29	5:33	20:52	6:23	19:47	7:13	18:37	8:07	17:32	8:57	16:56
5	9:14	17:10	8:40	18:02	7:43	18:54	6:32	19:48	5:29	20:39	4:49	21:22	4:53	21:28	5:34	20:50	6:25	19:45	7:14	18:35	8:09	17:31	8:58	16:56
6	9:14	17:11	8:38	18:04	7:41	18:55	6:29	19:49	5:27	20:40	4:48	21:23	4:54	21:28	5:36	20:48	6:26	19:42	7:16	18:32	8:11	17:29	9:00	16:55
7	9:13	17:13	8:36	18:06	7:39	18:57	6:27	19:51	5:25	20:42	4:48	21:24	4:55	21:27	5:37	20:46	6:28	19:40	7:18	18:30	8:13	17:27	9:01	16:55
8	9:13	17:14	8:35	18:07	7:36	18:59	6:25	19:53	5:23	20:44	4:47	21:24	4:56	21:27	5:39	20:44	6:30	19:38	7:19	18:28	8:15	17:25	9:02	16:55
9	9:12	17:15	8:33	18:09	7:34	19:01	6:23	19:55	5:22	20:45	4:47	21:25	4:57	21:26	5:41	20:42	6:31	19:35	7:21	18:26	8:16	17:24	9:03	16:55
10	9:12	17:17	8:31	18:11	7:32	19:03	6:20	19:56	5:20	20:47	4:46	21:26	4:58	21:25	5:42	20:40	6:33	19:33	7:23	18:23	8:18	17:22	9:04	16:54
11	9:11	17:18	8:29	18:13	7:30	19:04	6:18	19:58	5:18	20:49	4:46	21:27	4:59	21:24	5:44	20:39	6:34	19:31	7:25	18:21	8:20	17:21	9:05	16:54
12	9:10	17:20	8:27	18:15	7:27	19:06	6:16	20:00	5:17	20:50	4:46	21:27	5:00	21:23	5:45	20:37	6:36	19:28	7:26	18:19	8:22	17:19	9:06	16:54
13	9:10	17:21	8:25	18:17	7:25	19:08	6:14	20:01	5:15	20:52	4:46	21:28	5:02	21:22	5:47	20:35	6:38	19:26	7:28	18:17	8:24	17:18	9:07	16:54
14	9:09	17:23	8:23	18:19	7:23	19:10	6:12	20:03	5:14	20:53	4:45	21:29	5:03	21:21	5:49	20:33	6:39	19:24	7:30	18:14	8:25	17:16	9:08	16:54
15	9:08	17:24	8:21	18:21	7:20	19:11	6:09	20:05	5:12	20:55	4:45	21:29	5:04	21:20	5:50	20:31	6:41	19:21	7:32	18:12	8:27	17:15	9:09	16:54
16	9:07	17:26	8:19	18:22	7:18	19:13	6:07	20:07	5:10	20:56	4:45	21:30	5:05	21:19	5:52	20:29	6:43	19:19	7:33	18:10	8:29	17:13	9:10	16:55
17	9:06	17:28	8:17	18:24	7:16	19:15	6:05	20:08	5:09	20:58	4:45	21:30	5:06	21:18	5:54	20:26	6:44	19:17	7:35	18:08	8:31	17:12	9:11	16:55
18	9:05	17:29	8:15	18:26	7:13	19:17	6:03	20:10	5:08	20:59	4:45	21:30	5:08	21:17	5:55	20:24	6:46	19:14	7:37	18:06	8:32	17:11	9:11	16:55
19	9:04	17:31	8:13	18:28	7:11	19:18	6:01	20:12	5:06	21:01	4:45	21:31	5:09	21:16	5:57	20:22	6:48	19:12	7:39	18:04	8:34	17:10	9:12	16:55
20	9:03	17:33	8:11	18:30	7:09	19:20	5:59	20:13	5:05	21:02	4:45	21:31	5:10	21:15	5:58	20:20	6:49	19:10	7:40	18:01	8:36	17:08	9:13	16:56
21	9:02	17:34	8:09	18:32	7:07	19:22	5:56	20:15	5:04	21:04	4:46	21:31	5:12	21:13	6:00	20:18	6:51	19:07	7:42	17:59	8:37	17:07	9:13	16:56
22	9:01	17:36	8:07	18:34	7:04	19:24	5:54	20:17	5:02	21:05	4:46	21:31	5:13	21:12	6:02	20:16	6:53	19:05	7:44	17:57	8:39	17:06	9:14	16:57
23	$8: 59$	17:38	8:05	18:35	7:02	19:25	5:52	20:19	5:01	21:07	4:46	21:31	5:15	21:11	6:03	20:14	6:54	19:02	7:46	17:55	8:41	17:05	9:14	16:57
24	8:58	17:40	8:03	18:37	7:00	19:27	5:50	20:20	5:00	21:08	4:47	21:31	5:16	21:09	6:05	20:12	6:56	19:00	7:47	17:53	8:42	17:04	9:14	16:58
25	8:57	17:41	8:01	18:39	6:57	19:29	5:48	20:22	4:59	21:09	4:47	21:31	5:17	21:08	6:07	20:09	6:58	18:58	7:49	17:51	8:44	17:03	9:15	16:59
26	8:56	17:43	7:59	18:41	6:55	19:30	5:46	20:24	4:58	21:11	4:47	21:31	5:19	21:06	6:08	20:07	6:59	18:55	7:51	17:49	8:45	17:02	9:15	17:00
27	8:54	17:45	7:57	18:43	6:53	19:32	5:44	20:25	4:56	21:12	4:48	21:31	5:20	21:05	6:10	20:05	7:01	18:53	7:53	17:47	8:47	17:01	9:15	17:00
28	8:53	17:47	7:54	18:45	6:50	19:34	5:42	20:27	4:55	21:13	4:48	21:31	5:22	21:03	6:12	20:03	7:03	18:51	7:55	17:45	8:49	17:00	9:15	17:01
29	8:51	17:49			6:48	19:36	5:40	20:29	4:54	21:14	4:49	21:31	5:23	21:02	6:13	20:01	7:04	18:48	7:57	17:43	8:50	16:59	9:15	17:02
30	8:50	17:51			6:46	19:37	5:38	20:30	4:54	21:15	4:50	21:31	5:25	21:00	6:15	19:58	7:06	18:46	7:58	17:41	8:52	16:59	9:15	17:03
31	8:48	17:52			6:43	19:39			4:53	21:17			5:26	20:58	6:16	19:56			8:00	17:40			9:15	17:04

2011	JANUARY		FEBRUARY		MARCH		APRIL		MAY		JUNE		JULY		AUGUST		SEPTEMBER		OCTOBER		NOVEMBER		DECEMBER	
Date	Rise	Set																						
1	9:15	17:05	8:47	17:54	7:53	18:46	6:42	19:40	5:37	20:32	4:52	21:17	4:50	21:30	5:28	20:57	6:18	19:54	7:07	18:44	8:02	17:38	8:53	16:58
2	9:15	17:06	8:45	17:56	7:50	18:48	6:39	19:42	5:35	20:33	4:51	21:19	4:51	21:30	5:29	20:55	6:19	19:52	7:09	18:42	8:03	17:36	8:54	16:58
3	9:15	17:07	8:44	17:58	7:48	18:50	6:37	19:44	5:33	20:35	4:50	21:20	4:52	21:30	5:31	20:54	6:21	19:50	7:11	18:40	8:05	17:34	8:55	16:57
4	9:15	17:09	8:42	17:59	7:46	18:51	6:35	19:46	5:31	20:37	4:50	21:21	4:52	21:29	5:32	20:52	6:23	19:47	7:12	18:37	8:07	17:33	8:57	16:56
5	9:14	17:10	8:40	18:01	7:44	18:53	6:32	19:47	5:29	20:38	4:49	21:22	4:53	21:29	5:34	20:50	6:24	19:45	7:14	18:35	8:09	17:31	8:58	16:56
6	9:14	17:11	8:39	18:03	7:42	18:55	6:30	19:49	5:27	20:40	4:48	21:23	4:54	21:28	5:35	20:48	6:26	19:43	7:16	18:33	8:11	17:29	8:59	16:56
7	9:14	17:12	8:37	18:05	7:39	18:57	6:28	19:51	5:26	20:42	4:48	21:23	4:55	21:27	5:37	20:47	6:28	19:41	7:17	18:31	8:12	17:27	9:01	16:55
8	9:13	17:14	8:35	18:07	7:37	18:59	6:26	19:52	5:24	20:43	4:47	21:24	4:56	21:27	5:39	20:45	6:29	19:38	7:19	18:28	8:14	17:26	9:02	16:55
9	9:13	17:15	8:33	18:09	7:35	19:00	6:23	19:54	5:22	20:45	4:47	21:25	4:57	21:26	5:40	20:43	6:31	19:36	7:21	18:26	8:16	17:24	9:03	16:55
10	9:12	17:16	8:31	18:11	7:32	19:02	6:21	19:56	5:20	20:47	4:47	21:26	4:58	21:25	5:42	20:41	6:32	19:34	7:22	18:24	8:18	17:23	9:04	16:54
11	9:11	17:18	8:30	18:13	7:30	19:04	6:19	19:58	5:19	20:48	4:46	21:27	4:59	21:24	5:43	20:39	6:34	19:31	7:24	18:22	8:20	17:21	9:05	16:54
12	9:11	17:19	8:28	18:14	7:28	19:06	6:17	19:59	5:17	20:50	4:46	21:27	5:00	21:23	5:45	20:37	6:36	19:29	7:26	18:19	8:21	17:19	9:06	16:54
13	9:10	17:21	8:26	18:16	7:26	19:07	6:14	20:01	5:15	20:51	4:46	21:28	5:01	21:23	5:47	20:35	6:37	19:27	7:28	18:17	8:23	17:18	9:07	16:54
14	9:09	17:22	8:24	18:18	7:23	19:09	6:12	20:03	5:14	20:53	4:45	21:28	5:02	21:22	5:48	20:33	6:39	19:24	7:29	18:15	8:25	17:17	9:08	16:54
15	9:08	17:24	8:22	18:20	7:21	19:11	6:10	20:04	5:12	20:54	4:45	21:29	5:04	21:21	5:50	20:31	6:41	19:22	7:31	18:13	8:27	17:15	9:09	16:54
16	9:07	17:26	8:20	18:22	7:19	19:13	6:08	20:06	5:11	20:56	4:45	21:29	5:05	21:20	5:52	20:29	6:42	19:20	7:33	18:11	8:28	17:14	9:10	16:55
17	9:06	17:27	8:18	18:24	7:16	19:14	6:05	20:08	5:09	20:58	4:45	21:30	5:06	21:18	5:53	20:27	6:44	19:17	7:35	18:08	8:30	17:12	9:10	16:55
18	9:05	17:29	8:16	18:26	7:14	19:16	6:03	20:10	5:08	20:59	4:45	21:30	5:07	21:17	5:55	20:25	6:46	19:15	7:36	18:06	8:32	17:11	9:11	16:55
19	9:04	17:31	8:14	18:28	7:12	19:18	6:01	20:11	5:07	21:00	4:45	21:31	5:09	21:16	5:56	20:23	6:47	19:12	7:38	18:04	8:34	17:10	9:12	16:55
20	9:03	17:32	8:12	18:29	7:09	19:20	5:59	20:13	5:05	21:02	4:45	21:31	5:10	21:15	5:58	20:21	6:49	19:10	7:40	18:02	8:35	17:09	9:12	16:56
21	9:02	17:34	8:10	18:31	7:07	19:21	5:57	20:15	5:04	21:03	4:46	21:31	5:11	21:14	6:00	20:19	6:50	19:08	7:42	18:00	8:37	17:07	9:13	16:56
22	9:01	17:36	8:08	18:33	7:05	19:23	5:55	20:16	5:03	21:05	4:46	21:31	5:13	21:12	6:01	20:16	6:52	19:05	7:44	17:58	8:39	17:06	9:13	16:57
23	9:00	17:38	8:06	18:35	7:02	19:25	5:53	20:18	5:01	21:06	4:46	21:31	5:14	21:11	6:03	20:14	6:54	19:03	7:45	17:56	8:40	17:05	9:14	16:57
24	8:58	17:39	8:03	18:37	7:00	19:27	5:51	20:20	5:00	21:08	4:46	21:31	5:16	21:10	6:05	20:12	6:55	19:01	7:47	17:54	8:42	17:04	9:14	16:58
25	8:57	17:41	8:01	18:39	6:58	19:28	5:49	20:22	4:59	21:09	4:47	21:31	5:17	21:08	6:06	20:10	6:57	18:58	7:49	17:52	8:44	17:03	9:15	16:59
26	8:56	17:43	7:59	18:40	6:55	19:30	5:47	20:23	4:58	21:10	4:47	21:31	5:19	21:07	6:08	20:08	6:59	18:56	7:51	17:50	8:45	17:02	9:15	16:59
27	8:54	17:45	7:57	18:42	6:53	19:32	5:45	20:25	4:57	21:11	4:48	21:31	5:20	21:05	6:10	20:06	7:00	18:54	7:52	17:48	8:47	17:01	9:15	17:00
28	8:53	17:46	7:55	18:44	6:51	19:34	5:43	20:27	4:56	21:13	4:48	21:31	5:21	21:04	6:11	20:03	7:02	18:51	7:54	17:46	8:48	17:00	9:15	17:01
29	8:52	17:48			6:48	19:35	5:41	20:28	4:55	21:14	4:49	21:31	5:23	21:02	6:13	20:01	7:04	18:49	7:56	17:44	8:50	17:00	9:15	17:02
30	8:50	17:50			6:46	19:37	5:39	20:30	4:54	21:15	4:49	21:31	5:24	21:00	6:14	19:59	7:05	18:47	7:58	17:42	8:51	16:59	9:15	17:03
31	8:49	17:52			6:44	19:39			4:53	21:16			5:26	20:59	6:16	19:57			8:00	17:40			9:15	17:04

${ }^{1}$ National Research Council, Canada, Hertzberg Institute of Astrophysics
Sunrise/set corresponds to the upper limb of the sun appearing at the horizon

RADIATION

MONTH	BRIGHT SUNSHINE (hrs)				BRIGHT SUNSHINE DAYS		
	2010	NORMAL	\% OF NORMAL	\% OF POSSIBLE	NO. OF DAYS	NORMAL	NO. OF DAYS WITH MORE THAN 1 HOUR
January	*107.2	103.3	103.8	41.3	*25	23.8	*25
February	*121.8	132.3	92.1	43.7	*26	24.2	*26
March	*170.1	175.2	97.1	46.0	*31	27.1	*31
April	215.5	225.2	95.7	51.5	26	27.3	22
May	221.9	267.1	83.1	45.5	26	29.5	25
June	265.7	277.2	95.9	53.1	28	28.5	28
July	326.7	305.7	106.9	65.1	30	30.3	30
August	261.1	280.8	93.0	57.7	30	30.1	26
September	191.2	186.0	102.8	50.4	27	27.0	23
October	231.3	157.9	146.5	70.3	28	27.0	28
November	81.5	98.0	83.2	30.9	21	22.2	13
December	78.8	85.4	92.3	32.5	18	22.8	14
Total	2272.8	2294.1	99.1	50.7	316	319.8	291

*Estimated based Global and Diffuse Radiation (see Glossary of Terms)
Daily Global and Diffuse Radiation

RADIATION

Annual Bright Sunshine Hours

RADIATION

Seasonal Bright Sunshine Days

Bright Sunshine Hours, Global Radiaiton and Diffuse Radiation

RADIATION

Bright Sunshine Rankings

\% OF ACTUAL TO POSSIBLE BRIGHT SUNSHINE										DAYS WITH BRIGHT SUNSHINE									
\% Annual		\% Winter (DJF)		\% Spring (MAM)		\% Summer (JJA)		\% Autumn (SON)		Annual		$\begin{aligned} & \text { Winter } \\ & \text { (DJF) } \end{aligned}$		Spring (MAM)		Summer (JJA)		Autumn (SON)	
1976	58.8	1980	55.0	1980	66.7	1969	70.7	1976	60.3	1979	337	2007	80	1994	89	1977	92	1979	86
1980	58.3	2000	52.8	1968	63.0	1967	69.8	2008	57.3	1976	335	1972	79	2002	89	1982	92	1999	86
2008	58.1	2007	50.9	2009	62.8	1978	69.2	1966	53.3	1978	335	1984	79	2008	89	1997	92	1976	84
1978	57.2	1979	47.9	2008	62.2	1979	67.9	2001	52.9	2008	333	1979	78	1969	88	2001	92	2003	84
2007	57.0	2001	47.8	1976	62.1	1984	67.9	1974	52.2	1980	331	1982	78	1997	88	1969	91	1987	83
1979	56.8	1996	47.7	1971	60.1	1974	67.7	2007	52.1	1990	331	1993	78	1998	88	1970	91	1990	82
1971	56.3	2002	47.1	1969	59.2	1970	67.5	2009	52.1	2001	331	1966	77	1980	87	1976	91	2008	82
2009	56.3	1982	46.6	1977	58.8	2006	66.1	2005	52.1	2009	331	1988	77	1985	87	1978	91	1968	81
1967	56.0	1978	46.4	2002	58.6	1975	65.6	2010	51.8	2007	328	2000	77	2000	87	1979	91	2005	81
2006	55.7	1976	46.0	1998	58.6	1971	65.6	1979	51.3	1997	327	1976	76	1968	86	1989	91	1978	80
2001	55.7	1989	45.8	2007	58.6	1982	65.4	1994	51.1	1999	327	1980	76	1971	86	1967	90	2009	80
1977	55.4	2009	45.3	1989	57.6	1985	64.8	2000	50.3	1977	325	1977	74	1972	86	1971	90	1966	79
1969	55.3	1971	45.2	1981	57.6	2007	64.7	1967	50.2	1988	325	1978	74	1984	86	1980	90	1967	79
1975	55.0	1966	45.1	2006	57.4	1976	64.2	1982	50.0	1970	324	1990	74	1988	86	1983	90	1974	79
1968	54.2	1977	45.0	2001	56.9	1983	64.2	1988	49.3	1994	324	2008	74	1992	86	1985	90	1977	79
1970	53.9	1984	44.9	1994	56.6	1977	63.8	1978	49.1	1968	323	2009	74	2004	86	2007	90	1985	79
1981	53.8	1988	44.8	1966	55.7	1968	63.3	2003	49.1	1985	323	1991	73	2007	86	1972	89	1988	79
1974	53.8	1970	44.6	1972	55.4	1972	63.3	1975	48.9	1989	323	1970	72	1976	85	1974	89	1993	79
1966	53.5	2008	43.5	1967	54.4	1981	63.1	1990	48.7	1993	323	1971	72	1978	85	1981	89	2004	79
1989	53.1	1993	43.4	1970	53.6	2008	62.9	2006	48.5	1996	323	1996	72	2001	85	1986	89	1980	78
1988	53.0	2010	43.3	1979	53.4	1980	62.0	1973	48.3	2003	322	1973	71	2009	85	1987	89	1975	77
1982	52.8	1975	42.4	1985	53.4	1991	61.9	1980	47.7	1971	321	1987	71	1966	84	1994	89	1991	77
2003	52.1	1981	42.2	2003	53.3	1988	61.8	1977	47.6	1987	321	1989	71	1970	84	1999	89	1994	77
2002	51.6	2003	41.6	1975	53.1	1973	61.1	1997	47.5	2000	321	2001	71	1981	84	2003	89	1997	77
1984	51.6	1973	41.2	1978	53.0	2001	59.2	2004	47.4	2005	321	2002	71	1990	84	2009	89	2000	77
1990	51.0	1991	40.2	2005	52.4	2010	58.7	1989	46.5	1966	320	1999	70	1996	84	1966	88	1996	76
1973	51.0	1995	40.2	1991	51.7	1996	58.7	1971	46.2	1975	319	1975	69	2005	84	1968	88	2001	76
2010	50.7	1990	39.7	1988	51.6	1966	58.7	1995	45.8	1982	319	1997	69	1967	83	1984	88	2007	76
1985	50.5	1987	38.9	1992	51.5	1986	58.2	1987	45.5	2002	319	1968	68	1973	83	1988	88	2010	76
1991	50.5	1999	38.5	1973	50.8	1989	58.1	1999	44.2	1967	318	1974	68	1975	83	1995	88	1982	75
2000	50.0	1968	38.0	1983	50.1	1990	58.0	2002	44.1	1969	318	1985	68	1979	83	1996	88	1989	75
1972	49.8	2005	37.9	1990	49.8	2009	57.8	1968	44.0	1972	316	1995	68	1989	83	2000	88	2002	75
1997	49.6	2006	37.1	1997	49.3	1997	57.7	1993	43.8	2010	316	2003	68	1993	83	2006	88	1973	74
1994	49.6	1997	37.0	1974	49.0	2003	57.4	1981	43.1	1974	315	1969	67	2010	83	2008	88	1971	73
2005	49.1	1967	36.5	2004	48.7	2002	53.8	1969	42.9	1991	315	1981	67	1977	82	2010	88	1983	73
1983	48.9	1972	36.3	1982	48.3	1999	52.2	1983	41.5	1981	313	2005	67	1986	82	1975	87	1995	73
1996	47.9	2004	35.9	1993	48.2	2000	52.1	1991	40.4	1984	312	1992	65	1991	82	1990	87	1970	72
1999	46.5	1992	35.9	2000	48.1	1994	51.0	1970	40.2	1973	311	2006	64	1999	82	1991	87	1981	72
1995	46.5	1986	35.6	2010	47.6	1995	50.5	1985	39.3	1998	310	1967	63	1982	81	1993	87	1998	72
1986	46.0	1985	35.1	1995	47.6	2004	48.5	1998	38.9	2006	308	2004	63	1995	81	1998	87	1969	71
1998	46.0	1969	34.0	1984	47.0	2005	48.5	1984	38.1	1986	307	1986	62	2006	81	1973	86	1986	71
1987	45.1	1998	33.7	1987	46.8	1992	48.4	1996	37.7	1983	305	1998	62	1983	80	2002	85	2006	70
1993	44.9	1974	32.2	1999	45.2	1987	46.3	1986	36.4	1995	303	1994	60	1974	79	2005	84	1992	66
2004	44.8	1994	26.9	1986	44.7	1998	45.8	1992	35.3	2004	301	1983	55	2003	79	1992	83	1972	64
1992	43.8	1983	24.2	1996	44.1	1993	44.9	1972	33.6	1992	300	2010	44	1987	77	2004	81	1984	64

Note: January, February \& March values are estimated

WIND

MONTH	AVERAGE WIND SPEED (km/h)			HIGHEST INSTANTANEOUS WIND SPEED (km/h)						
	$\begin{gathered} 2010 \\ \text { Average } \end{gathered}$	Normal*	2010 Peak Speed Average	2010 for CRS (Speed / direction / date)			Since 1953 (Saskatoon Diefenbaker Int'l. Airport) (Speed / direction / day / year)			
January	13.7	16	42.8	56.0	NNW	24	111	W	11	1986
February	10.5	16	37.7	43.8	SE	27	106	N	22	1988
March	14.6	17	45.3	70.4	W	17	93	W	18	1959
April	17.9	18	47.9	91.2	W	09	108	W	06	1959
May	17.9	18	46.6	70.2	NNW	23	132	SW	17	1965
June	14.4	17	45.3	71.6	ESE	29	117	S	01	1986
July	12.2	16	45.1	80.4	WSW	16	113	E	05	1955
August	12.4	16	45.0	65.8	NNE	12	151	W	14	1967
September	14.4	17	41.2	54.3	NW	17	148	W	22	1967
October	14.0	17	44.8	62.3	N	26	138	NW	16	1967
November	12.6	16	39.6	51.6	N	16	100	W	17	1967
December	14.3	16	41.0	60.3	SE	14	121	W	12	1955

*1961-90 Normals used are from the Environment Canada, Saskatoon Diefenbaker International Airport station, 1993

Annual Wind Frequency by Direction (\%)

Annual Peak Wind Frequency by Direction (\%)

WIND

Average Wind Speed by Direction (km/h)

WIND

Average Wind Frequency by Direction (\%)

August

November

WIND

EXTREME DAILY WINDS (km/h)		
DATE	WIND SPEED/ DIRECTION	BEAUFORT WIND SCALE DESIGNATION*
January 24	56.0 NNW	Near Gale
March 17	70.4 W	Gale
March 18	63.0 W	Gale
March 29	57.2 SW	Near Gale
March 30	61.0 WSW	Near Gale
March 31	60.8 WNW	Near Gale
April 8	70.3 SSW	Gale
April 9	91.2 W	Storm
April 10	63.7 WNW	Gale
April 23	54.1 WSW	Near Gale
April 28	57.2 SE	Near Gale
April 30	65.3 N	Gale
May 1	59.3 NNW	Near Gale
May 3	62.5 ESE	Near Gale
May 4	67.1 NE	Gale
May 20	70.1 SW	Gale
May 21	56.2 SSW	Near Gale
May 22	66.5 NNE	Gale
May 23	70.2 W	Gale
May 25	58.1 N	Near Gale
June 5	52.9 WNW	Near Gale
June 14	53.1 SSW	Near Gale
June 17	56.0 NE	Near Gale
June 24	54.8 SW	Near Gale
June 26	57.6 W	Near Gale
June 28	52.1 SE	Near Gale
June 29	71.6 ESE	Gale
June 30	71.5 ENE	Gale
July 8	58.5 NW	Near Gale
July 9	55.2 W	Near Gale
July 12	53.8 SSE	Near Gale
July 13	54.8 WSW	Near Gale
July 15	56.7 NNW	Near Gale
July 16	80.4 WSW	Strong Gale
August 8	64.3 NNW	Gale
August 12	65.8 NNE	Gale
August 13	52.3 NNE	Near Gale
August 14	55.4 N	Near Gale
August 23	55.2 NW	Near Gale
August 27	56.0 WNW	Near Gale
September 16	52.5 WNW	Near Gale
September 17	54.3 NW	Near Gale
October 5	60.0 WNW	Near Gale
October 15	56.0 NW	Near Gale
October 26	62.3 N	Near Gale
October 27	61.0 NNW	Near Gale
November 16	51.6 N	Near Gale
December 12	51.6 SE	Near Gale
December 14	60.3 SE	Near Gale
*Strong Gale >=76 but <88 *Storm		$\begin{aligned} & >=63 \text { but }<76 \\ & >=88 \text { but }<102 \end{aligned}$

WINDCHILL CALCULATION CHART ${ }^{1}$												
km/h	5°	0°	-5°	-10°	-15°	-20°	-25°	-30°	-35°	-40°	-45 ${ }^{\circ}$	-50°
5	4	-2	-7	-13	-19	-24	-30	-36	-41	-47	-53	-58
10	3	-3	-9	-15	-21	-27	-33	-39	-45	-51	-57	-63
15	2	-4	-11	-17	-23	-29	-35	-41	-48	-54	-60	-66
20	1	-5	-12	-18	-24	-31	-37	-43	-49	-56	-62	-68
25	1	-6	-12	-19	-25	-32	-38	-45	-51	-57	-64	-70
30	0	-7	-13	-20	-26	-33	-39	-46	-52	-59	-65	-72
35	0	-7	-14	-20	-27	-33	-40	-47	-53	-60	-66	-73
40	-1	-7	-14	-21	-27	-34	-41	-48	-54	-61	-68	-74
45	-1	-8	-15	-21	-28	-35	-42	-48	-55	-62	-69	-75
50	-1	-8	-15	-22	-29	-35	-42	-49	-56	-63	-70	-76
55	-2	-9	-15	-22	-29	-36	-43	-50	-57	-63	-70	-77
60	-2	-9	-16	-23	-30	-37	-43	-50	-57	-64	-71	-78
65	-2	-9	-16	-23	-30	-37	-44	-51	-58	-65	-72	-79
70	-2	-9	-16	-23	-30	-37	-44	-51	-59	-66	-73	-80
75	-3	-10	-17	-24	-31	-38	-45	-52	-59	-66	-73	-80
80	-3	-10	-17	-24	-31	-38	-45	-52	-60	-67	-74	-81
Approximate Thresholds												
-28	Increasing risk of frostbite for most people within 30 minutes of exposure											
-36	High risk for most people in 5 to 10 minutes of exposure											
-48	High risk for most people in 2 to 5 minutes of exposure											
-55	High risk for most people in 2 minutes of exposure or less											

1: Environment Canada, 2004b

MAXIMUM DAILY WIND CHILL VALUE < $0^{\circ} \mathrm{C}$												
DATE	JAN	FEB	MAR	APR	MAY	JUN	JLY	AUG	SEP	OCT	NOV	DEC
1	-51	-31	-16	-7	-4					-2	-4	-27
2	-31	-20	-24	-7	-4						-1	-18
3	-32	-29	-21	-6	-4						-3	-15
4	-30	-28	-17	-6	-8						-8	-23
5	-33	-20	-14	-7	-7						-3	-26
6	-43	-21	-10	-9	-5						-4	-28
7	-47	-36	-13	-3	-6						-4	-28
8	-38	-37	-7	-1	-3						-6	-29
9	-31	-37	-6	-11	-3						-7	-25
10	-24	-34	-6	-12	-2						-10	-30
11	-17	-19	-9	-11	-2						-12	-33
12	-12	-31	-8	-8	-1					-3	-11	-36
13	-15	-31	-6	-6						-2	-11	-26
14	-23	-32	-9	-3						-2	-6	-19
15	-16	-31	-12	-3						-1	-5	-19
16	-15	-19	-10	-4		-4				-5	-16	-23
17	-24	-22	-6	-2		-7				-7	-22	-27
18	-16	-16	-13	-1		-6				-6	-27	-26
19	-20	-18	-15			-3				-1	-33	-24
20	-22	-23	-12							-5	-29	-29
21	-14	-25	-8							-2	-25	-29
22	-12	-22	-11			-2				-5	-32	-28
23	-14	-31	-14							-3	-36	-29
24	-25	-23	-23	-5						-3	-33	-19
25	-32	-19	-24	-10	-3					-7	-38	-20
26	-34	-24	-11	-4	-1					-11	-19	-16
27	-38	-21	-9	-7	-1					-16	-23	-20
28	-42	-20	-6		-1					-18	-14	-26
29	-37		-2		-1					-10	-17	-32
30	-25		-2	-3						-14	-27	-35
31	-41		-4							-7		-34

SOIL TEMPERATURES

MONTH	Mean Air Temp @ 0900h (${ }^{\circ} \mathrm{C}$)	SOIL TEMPERATURES (C°) @ 0900hrs												Mean Air Temp @ 1600h (${ }^{\circ} \mathrm{C}$)	SOIL TEMPERATURES @ 1600hrs			
		10 cm		20 cm		50 cm		100 cm		150 cm		300 cm			10 cm		20 cm	
		2010	NORM		2010	NORM	2010	NORM										
January	-13.8	-5.4	-8.0	-3.8	-7.1	-3.2	-3.5	-0.3	-0.1	1.5	1.7	4.4	4.6	-8.9	-5.3	-7.8	-3.7	-6.2
February	-15.5	-4.4	-6.7	-2.8	-6.1	-2.8	-3.5	-0.4	-0.8	1.0	0.8	3.3	3.4	-9.3	-4.5	-6.6	-2.8	-5.2
March	-2.7	-1.7	-2.8	-1.1	-2.4	-1.7	-1.5	-0.3	-0.4	0.6	0.6	2.6	2.7	4.0	-1.5	-2.6	-1.1	-1.8
April	5.3	1.3	3.6	-0.2	4.0	2.8	3.0	2.3	1.6	1.9	1.5	2.6	2.4	11.7	2.9	5.5	-0.2	4.6
May	9.4	5.5	10.8	3.7	11.3	7.1	9.3	6.2	6.4	5.0	4.8	3.9	3.4	14.3	7.1	13.6	3.8	12.0
June	16.4	10.1	15.7	7.5	16.3	11.0	14.0	9.4	10.4	7.9	8.3	5.8	5.4	20.2	12.0	19.0	7.7	17.1
July	17.9	12.1	18.0	9.5	18.9	15.0	16.7	13.3	13.1	11.4	10.9	8.1	7.5	22.2	14.3	21.3	9.6	19.5
August	15.7	7.6	16.9	10.9	18.1	8.7	16.8	15.0	14.1	14.0	12.3	12.6	9.1	21.6	7.7	20.0	12.6	18.6
September	9.1	6.2	11.0	4.9	12.5	11.3	13.2	11.7	12.4	11.6	11.7	10.4	9.9	15.5	7.5	13.4	5.0	13.1
October	4.2	3.1	4.7	2.2	6.2	8.4	8.3	9.6	9.2	9.7	9.6	9.8	9.4	12.9	4.1	6.4	2.1	6.9
November	-7.4	-1.0	-1.7	-1.0	-0.5	3.5	3.0	5.7	5.6	7.0	6.8	8.6	8.1	-3.0	-0.9	-1.2	-1.0	0.3
December	-14.5	-1.5	-6.6	0.0	-5.6	1.1	-1.7	3.2	2.0	4.5	3.8	6.7	6.4	-11.9	-1.5	-6.3	0.1	-4.6

Average Monthly Soil Temperatures @ 0900 hrs

Average Monthly Soil Temperatures @ 1600 hrs

Saskatchewan Research Council Annual Weather Summary latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 36 \mathrm{~W}$ asl 497 m Saskatoon				
		2010 VALUE	2009 VALUE	NORMAL (1971-2000) OR EXTREME (1892-2004)
	```Average annual maximum ( \({ }^{\circ} \mathrm{C}\) ) Extreme annual maximum ( \({ }^{\circ} \mathrm{C} /\) date) Average annual minimum ( \({ }^{\circ} \mathrm{C}\) ) Extreme annual minimum ( \({ }^{\circ} \mathrm{C} /\) date) Annual average \(\left({ }^{\circ} \mathrm{C}\right)\) No. of Frost-free days (Temperature \(>0^{\circ} \mathrm{C}\) ) \% of Frost-free days for the year```	8.9 33.6 August 26 -1.5 -35.2 January 1 3.7 191 $52.3 \%$	7.8 34.6 Sept 19 -3.8 -37.4 Jan 04 2.0 160 $43.8 \%$	8.3 41.0 June 1988 -3.4 -50.0 Feb. 1893 2.5 197.1 $54.0 \%$
¢	Annual growing ( $5^{\circ} \mathrm{C}$ base)   Annual frost-free growing ( $5^{\circ} \mathrm{C}$ base)   Annual heating ( $18^{\circ} \mathrm{C}$ base)   Annual cooling ( $18^{\circ} \mathrm{C}$ base)	$\begin{array}{r} 1730.9 \\ 1409.4 \\ 5279.9 \\ 89.9 \end{array}$	$\begin{array}{r} 1646.3 \\ 1409.3 \\ 5948.4 \\ 122.3 \end{array}$	$\begin{array}{r} 1672.9 \\ 1345.3 \\ 5809.0 \\ 119.1 \end{array}$
	Annual total (mm)   Greatest Daily (mm/date)   Greatest Monthly (mm/date)   Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ )   \% of Precipitation days for the year	707.4   44.2 September 10   147.2 June   132   36.2\%	$\begin{array}{r} 319.3 \\ \text { 40.8 June } 21 \\ \text { 98.8 August } \\ 119 \\ 32.6 \% \end{array}$	$\begin{array}{r} 348.2 \\ 99.4 \text { June 24, } 1983 \\ \text { 160.1/June } 1991 \\ 115.7 \\ 31.7 \% \end{array}$
号	Average Annual wind speed (km/h)   Peak gust (speed/direction/date)   Prevailing direction   Prevailing direction for Peak Winds	$\begin{array}{r} 14.1 \\ 91.2^{\mathrm{w}} \text { April } 9 \\ \text { SE } 11.1 \%^{5} \\ \text { SE } 11.9 \%^{5} \end{array}$	$\begin{array}{r} 14.2 \\ 75.0^{\text {SSE }} \text { Sept } 29 \end{array}$	$151.0 \text { waug 14, } 16.6^{2} 1967^{2}$
交	Total annual bright sunshine (hours)   \% possible bright sunshine   \% normal bright sunshine   Bright Sunshine days   \% of normal Bright Sunshine days   Total annual global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ )   Total annual diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ )	$\begin{array}{r} 2272.8^{6} \\ 50.7^{6} \\ 99.1 \%^{6} \\ 316^{6} \\ 98.8 \%^{6} \\ 4180.0 \\ 1639.1 \end{array}$	$\begin{array}{r} 2524.5 \\ 56.3 \\ 110.0 \% \\ 331.0 \\ 103.5 \% \\ 4451.0 \\ 1700.5 \end{array}$	$\begin{array}{r} 2294.1 \\ 51.2 \\ 319.9 \\ \\ 4391.9^{3} \\ 1729.6^{3} \end{array}$
	Your Information   The 1971-2000 normals for CRS have been calculat Where suitable, missing data has been replaced w and/or the Saskatoon Diefenbaker International Air Wind normals are from the Saskatoon DIA station. Global and Diffuse radiation normals are from 1961 Extreme values for temperature and precipitation ar from 1882 to 1901 have several large gaps. Data for the wind roses have been compiled using The bright sunshine recorder was in for calibration estimated using the Global/Diffuse values.(see Glossa	from original data entered data from the University rt (DIA) station (10 km W   1990 period.   from the Saskatoon area   istaya's "Windographer™ uring January, February a   of Terms; Bright Sunshine for Me	mputerized spread skatchewan, Kern CRS).   stations extendin   ch therefore, the )	d checked for correctness. station ( 2.5 km E of CRS)   1882. The earlier records   those months have been
	7) F. $\begin{aligned} & \text { Ministry of } \\ & \text { Energy and }\end{aligned}$ Aenources	Agriculture and Agri-Food Canada Scampans	Canada	chewan ry of  



Saskatchewan Research Council Monthly Weather Summary
latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 36^{\prime} \mathrm{W}$ asl 497 m Saskatoon
CRS estab. 1963


## For Your Information

This February had 22 days with maximum temperatures warmer than $-10^{\circ} \mathrm{C}$. Minimum temperatures, except for the last day, were all $-10^{\circ} \mathrm{C}$ or colder including one $-30^{\circ} \mathrm{C}$ on February $8^{\mathrm{th}}$. Overall, the temperatures were slightly below normal values. The temperatures were not reflected in the heating degree-day values where, instead of being above normal, they were actually slightly below normal by $1.3 \%$. Snow was not a problem as only 4.9 mm was measured over 9 days. Homeowners had to decide whether to shovel or just let the wind blow the miniscule amount off the sidewalks. Winds were very low during the month with 21 days recording daily maximum wind speeds of less than $31 \mathrm{~km} / \mathrm{h}$.
Groundhog Day arrived with the settlers, along with their hopes and dreams. As badgers or sacred bears, used as spring prophets in Europe, were scarce in the new land, settlers turned to groundhogs as their spring prognosticators. A sunny, February $2^{\text {nd }}$ is greeted with dismay as it indicates six more weeks of winter weather. How accurate are the furry fortune tellers? Those who 'pooh pooh' the predictions consider them unreliable. While those who believe, credit the remarkable rodents with being right $90-100 \%$ of the time. ${ }^{1}$
${ }^{1}$ Phillips, 1993



		Saskatchewan Research Council Monthly Weather Summary   latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 36^{\prime} \mathrm{W}$ asl 497 m Saskatoon				
	April 2010		$\begin{array}{r} 2010 \\ \text { VALUE } \end{array}$	$$	AL OR EXTREME FOR CRS 1971-2000	EXTREME FOR SASKATOON STATIONS
	Average monthly   Extreme mon   Average monthly   Extreme mon   Monthly averag   No.of Frost-free	```aximum (* C) maximum (' }\mp@subsup{}{}{\circ}/\mathrm{ date) nimum (* C) minimum (}\mp@subsup{}{}{\circ}\textrm{C}/\mathrm{ date) C) s (Temp. > 0 }\mp@subsup{}{}{\circ}\textrm{C}```	$\begin{array}{r} 13.0 \\ 23.3 / 22 \\ 1.0 \\ -5.3 / 06 \\ 7.0 \\ 16 \end{array}$	$\begin{array}{r} 9.5 \\ 20.3 / 13 \\ -3.0 \\ -10.5 / 01 \\ 3.2 \\ 7 \end{array}$	10.7 $31.5 / 2001 / 28$ -1.7 $-27.8 / 1979 / 01$ 4.5 10.6	$33.3 / 1952 / 28_{\text {SAUS }}$   $-30.5 / 1979 / 01_{\text {swt }}$
	Monthly growing Yearly total-to Monthly heating Yearly total-to Monthly cooling Yearly total-to	C base) growing ${ }^{\circ} \mathrm{C}$ base) heating ${ }^{\circ} \mathrm{C}$ base) cooling	$\begin{array}{r} 91.4 \\ 107.4 \\ 328.9 \\ 2689.9 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{r} 26.3 \\ 26.3 \\ 442.7 \\ 3280.2 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{r} 61.3 \\ 63.7 \\ 420.7 \\ 3116.2 \\ 0.3 \\ 0.3 \end{array}$	
	Monthly total (mm)   Yearly total-to-d   Greatest daily (m Measurable prec	$\begin{aligned} & \mathrm{e}(\mathrm{~mm}) \\ & \text { date) } \\ & \text { ation days }(\geq 0.2 \mathrm{~mm}) \end{aligned}$	$\begin{array}{r} 81.1 \\ 97.2 \\ 41.8 / 13 \\ 9 \end{array}$	$\begin{array}{r} 3.4 \\ 31.0 \\ 1.4 / 18 \\ 7 \end{array}$	23.6 71.3 $24.6 / 1985 / 19$ 8.4	$\begin{gathered} 86.1 / 1955_{\text {Us }} \\ 30.2 / 1955 / 19_{\text {Us }} \end{gathered}$
$\frac{2}{2}$	Average monthly Peak gust (speed	ed (km/h)   ection/date)	$\begin{array}{r} 17.9 \\ 91.2^{\mathrm{w}} 09 \end{array}$	$\begin{array}{r} 14.3 \\ 59.7^{\mathrm{NW}} 18 \end{array}$	$17.2_{\text {SA }}$	108w1959/06
	Monthly bright s \% possible brig \% normal brig Bright Sunshin Monthly global Monthly diffuse	hine (hours) sunshine unshine ays tion $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$ ation $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	$\begin{array}{r} 215.5 \\ 51.5 \\ 95.7 \\ 26 \\ 431.7 \\ 159.3 \end{array}$	$\begin{array}{r} 275.7 \\ 65.8 \\ 122.4 \\ 28 \\ 517.1 \\ 193.8 \end{array}$	$\begin{array}{r} 225.2 \\ 53.8 \\ \\ 27.3 \\ 492.2 \\ 178.5 \end{array}$	
\%	Average temperature $\left({ }^{\circ} \mathrm{C}\right)$   @ 9:00am	Air/grass level $10 \mathrm{~cm} / 20 \mathrm{~cm}$ $50 \mathrm{~cm} / 100 \mathrm{~cm}$ $150 \mathrm{~cm} / 300 \mathrm{~cm}$	$\begin{array}{r} 5.3 / 13.1 \\ 1.3 /-0.2 \\ 2.8 / 2.3 \\ 1.9 / 2.6 \\ \hline \end{array}$	$\begin{array}{r} 10.7 \\ 0.6 / 0.5 \\ 0.9 / 0.9 \\ 1.1 / 2.5 \\ \hline \end{array}$	$\begin{aligned} & 3.6 / 4.0 \\ & 3.0 / 1.6 \\ & 1.5 / 2.4 \end{aligned}$	calculated by Env. Canada Wind Normal and Extreme are from Saskatoon Airport
	Your Inform ecords for April 2   mperature   west Daily Maxim April $252.8^{\circ} \mathrm{C}$; old		ion   daily   41.8 mm ; old   11.2; old reco   14.4; old reco   Monthly   ; old record 55   Daily Extreme   41.8 mm ; old re	cord $8.4 \mathrm{~mm} / 2003$   $3.7 \mathrm{~mm} / 1990$   $4.1 \mathrm{~mm} / 1979$   mm/1985   rd 24.6 mm 19/1985	Number of da $>=10 \mathrm{~mm} ;$   days/ 1991 $>=25 \mathrm{~mm} \text {; }$   occurence	with days; old record 3   days; no previous
		askPower	Agriculture and Agri-Food Canada	Agriculture et Agroalimentaire Canada	$\zeta^{\text {campbellscie }}$	Kipp \& Zonen




CRS estab. 1963



## For Your Information

For all the precipitation received during July, only one daily record was broken. On July $2^{\text {nd }}, 27.2 \mathrm{~mm}$ replaced the 1990 record of 23.0 mm . The monthly total of $94.6 \mathrm{~mm}(36.6 \mathrm{~mm}$ more than normal) was only the fifth greatest total since 1964. However, new records are being set for accumulation. The four-month accumulation (April to July) of 457.1 mm broke the 1991 total by 102.7 mm and also has broken the 1991 April to August record total of 387.7 mm . We are only 73.7 mm shy of the greatest annual total of 546.9 mm with still five months to go. Meanwhile, July temperatures hovered around normal with no real hot days or cool nights recorded. Winds, generally from the west-northwest, were only Strong ( $40-50 \mathrm{~km} / \mathrm{h}$ ) to Strong Gales (76$87 \mathrm{~km} / \mathrm{h}$ ) preceding the start of the frequent thunder and lightning storms.
The 'umbrella' (a word meaning 'little shade') was in existence in Egypt, Assyria, Greece and China over four thousand years ago. First designed to provide shade from the sun, they were later waxed and lacquered by the Chinese for use in the rain.
The first British umbrella shop, opened in 1830, is still located at its same Oxford Street address in London, England. ${ }^{1}$
${ }^{1}$ Bellis, nd a




Saskatchewan Research Council Monthly Weather Summary   latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 3^{\prime} \mathrm{W}$ asl 497 m Saskatoon					CRS estab. 1963
	October 2010	$\begin{array}{r} 2010 \\ \text { VALUE } \end{array}$	$\begin{array}{r} 2009 \\ \text { VALUE } \end{array}$	RMAL OR EXTREME FOR CRS 1971-2000	EXTREME FOR SASKATOON STATIONS
$\stackrel{\text { 山 }}{\substack{\text { ¢ }}}$	Average monthly maximum ( ${ }^{\circ} \mathrm{C}$ )   Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date)   Average monthly minimum ( ${ }^{\circ} \mathrm{C}$ )   Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date)   Monthly average $\left({ }^{\circ} \mathrm{C}\right)$   No.of Frost-free days (Temp. $>0^{\circ} \mathrm{C}$ )	13.9   24.4/08   $-11.2 / 28$   7.6   21	$\begin{array}{r} 5.1^{*} \\ 16.9 / 17 \\ -1.8^{*} \\ -8.6 / 09 \\ 1.7^{*} \\ 10 \end{array}$	10.8 $28.5 / 1980 / 06 \& 1984 / 08$ -1.3 $-21.5 / 1991 / 29,30$ 4.8 11.6	$\begin{aligned} & 32.2 / 1943 / 05_{\text {SAUS }} \\ & -25.6 / 1919 / 26_{\text {SEUS }} \end{aligned}$
	Monthly growing ( $5^{\circ} \mathrm{C}$ base)   Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling	$\begin{array}{r} 123.6 \\ 1722.7 \\ 322.8 \\ 3606.3 \\ 0.0 \\ 89.9 \end{array}$	$\begin{array}{r} 7.4 \\ 1633.9 \\ 506.5 \\ 4317.0 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{r} 63.7 \\ 1670.2 \\ 410.2 \\ 4105.5 \\ 0.1 \\ 119.1 \end{array}$	
2	Monthly total (mm)   Yearly total-to-date (mm)   Greatest daily (mm/date)   Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ )	$\begin{array}{r} 14.3 \\ 670.7 \\ 6.3 / 24 \\ 6 \end{array}$	$\begin{array}{r} 28.7 \\ 311.7 \\ 10.4 / 01 \\ 14 \end{array}$	$\begin{array}{r} 16.4 \\ 315.1 \\ 36.7 / 1984 / 16 \\ 6.3 \end{array}$	$\begin{array}{r} 69.8 / 1969_{\text {SRC }} \\ 41.7 / 1924 / 12 \& 1969 / 03_{\text {SESA }} \end{array}$
$\frac{2}{2}$	Average monthly speed (km/h) Peak gust (speed/direction/date)	$\begin{array}{r} 14.0 \\ 62.3^{N} 26 \end{array}$	$\begin{array}{r} 13.6 \\ 59.9^{\mathrm{NNW}} 07 \end{array}$	$16.2_{\text {SA }}$	$138{ }^{\text {Nw }} 1967 / 16_{\text {SA }}$
	Monthly bright sunshine (hours) \% possible bright sunshine \% normal bright sunshine Bright Sunshine days Monthly global radiation(MJ/m²) Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ )	$\begin{array}{r} 231.3 \\ 70.3 \\ 146.5 \\ 28 \\ 260.3 \\ 79.7 \end{array}$	$\begin{array}{r} 69.9 \\ 21.3 \\ 44.3 \\ 23 \\ 152.6 \\ 109.0 \end{array}$	$\begin{array}{r} 157.9 \\ 48.0 \\ \\ 27.0 \\ 239.1 \\ 92.6 \end{array}$	
\%	Average Air/grass level   temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$   @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$    $150 \mathrm{~cm} / 300 \mathrm{~cm}$	$\begin{aligned} & 4.2 / 9.7 \\ & 3.1 / 2.2 \\ & 8.4 / 9.6 \\ & 9.7 / 9.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.8 \\ 1.2 / 1.7 \\ 6.6 / 8.8 \\ 9.5 / 9.5 \end{array}$	$\begin{aligned} & 4.7 / 6.2 \\ & 8.3 / 9.2 \\ & 9.6 / 9.4 \end{aligned}$	calculated by Env. Canada Wind Normal and Extreme are from Saskatoon Airport
	r Your Information   The wintry west ex And hail and Or the stormy north sen The blinding While, tumbling brown, the b And roars fr And bird and beas And pass the	Winter:   Robbie B   ends his blast, ain does blaw; driving forth leet and snaw: n comes down, bank to brae; in covert rest, heartless day.	Dirge   s (1781)   "The sweep   The joyless Let others Than all the The tempes My griefs i The leafless Their fate	blast, the sky o'ercast," ter day $r$, to me more dear ide of May: howl, it soothes my soul, ems to join; ees my fancy please, embles mine!	due to temperature sensor maintenance
	14 SaskPower   2) $\begin{aligned} & \text { Ministry of } \\ & \text { Envegy and }\end{aligned}$ Enopgy and Resources	Agriculture and Agri-Food Cana	Agriculture Agroaliment	$\qquad$   campaellscil   anada	  Zonen



	November 2010	$\begin{array}{r} 2010 \\ \text { VALUE } \end{array}$	$\begin{array}{r} 2009 \\ \text { VALUE } \end{array}$	NORMAL OR EXTREME FOR CRS 1971-2000	EXTREME FOR SASKATOON STATIONS
	Average monthly maximum ( ${ }^{\circ} \mathrm{C}$ )   Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date)   Average monthly minimum ( ${ }^{\circ} \mathrm{C}$ )   Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date)   Monthly average ( ${ }^{\circ} \mathrm{C}$ )   No. of Frost-free days (Temp. $>0^{\circ} \mathrm{C}$ )	$\begin{array}{r} \hline-1.8 \\ 16.1 / 05 \\ -9.4 \\ -26.4 / 25 \\ -5.6 \\ 3 \end{array}$	$\begin{array}{r} \hline 6.7 \\ 16.8 / 06 \\ -4.4 \\ -10.529 \\ 1.1 \\ 2 \end{array}$	$\begin{array}{r} \hline-1.4 \\ 19.4 / 1975 / 04 \\ -10.3 \\ -33.5 / 1985 / 24 \\ -5.9 \\ 1.2 \end{array}$	$\begin{gathered} 21.7 / 1903 / 03_{S E} \\ -39.4 / 1893 / 30_{S M} \end{gathered}$
DEGREE-DAYS	Monthly growing ( $5^{\circ} \mathrm{C}$ base)   Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling	$\begin{array}{r} 8.1 \\ 1730.8 \\ 707.6 \\ 4313.9 \\ 0.0 \\ 89.9 \end{array}$		$\begin{array}{r} 2.6 \\ 1672.8 \\ 715.8 \\ 4821.3 \\ 0.0 \\ 119.1 \end{array}$	
	Monthly total (mm)   Yearly total-to-date (mm)   Greatest daily (mm/date)   Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ )	$\begin{array}{r} 28.2 \\ 698.9 \\ 9.0 / 09 \\ 13 \end{array}$	$\begin{array}{r} 0.4 \\ 312.1 \\ 0.4 / 01 \\ 1 \end{array}$	$\begin{array}{r} 14.8 \\ 329.9 \\ 19.3 / 1978 / 04 \\ 7.9 \end{array}$	$\begin{array}{r} 57.3 / 1940_{\mathrm{SE}} \\ 27.9 / 1938 / 01_{\mathrm{US}} \end{array}$
$\frac{2}{3}$	Average monthly speed (km/h) Peak gust (speed/direction/date)	$\begin{array}{r} 12.6 \\ 51.6^{\mathrm{N}} 16 \end{array}$	$\begin{array}{r} 14.0 \\ 70.4^{\text {wsw }} 06 \end{array}$	14.8 SA	$100^{\mathrm{w}} 1976 / 17_{\text {SA }}$
	Monthly bright sunshine (hours) \% possible bright sunshine   \% normal bright sunshine Bright Sunshine days   Monthly global radiation $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$   Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ )	$\begin{array}{r} 81.5 \\ 30.9 \\ 83.2 \\ 21 \\ 106.9 \\ 60.7 \end{array}$	$\begin{array}{r} 169.4 \\ 64.3 \\ 172.9 \\ 28 \\ 136.8 \\ 53.7 \end{array}$	$\begin{array}{r} 98.0 \\ 36.7 \\ 22.2 \\ 123.7 \\ 73.6 \end{array}$	Saskatoon Stations SM=interrupted readings (NWMP) about 1892-1900 SE= Eby (pioneer) 1901-41 SA= S'toon Airport 1942US= Univ. of SK 1915-64
\%	Average Air/grass level   temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$   @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$    $150 \mathrm{~cm} / 300 \mathrm{~cm}$	$\begin{array}{r} 7.4 / 3.1 \\ -1.0 /-1.0 \\ 3.5 / 5.7 \\ 7.0 / 8.6 \end{array}$	$\begin{array}{r} 3.5 \\ -1.7 /-1.5 \\ 2.8 / 5.4 \\ 6.7 / 6.8 \end{array}$	$\begin{array}{r} -1.7 /-0.5 \\ 3.0 / 5.6 \\ 6.8 / 8.1 \end{array}$	Normals   Global and diffuse radiation $=1961-1990$ Soil Temp. $=1971-2000$ calculated by Env. Canada Wind Normal and Extreme are from Saskatoon Airport

## For Your Information

This November makes seven months where precipitation has been above normal in 2010. Out of 13 precipitation days, only November $9^{\text {th }}$ produced a record with 9.0 mm . The blizzard-like conditions on the $18^{\text {th }}$ contributed 4.6 mm to the monthly total of 28.2 mm . This amount adds to the prodigious cumulative annual total of 698.9 mm - with still a month to go in 2010. The maximum temperature averaged to just below normal value with the unseasonable high temperatures at the beginning of the month being offset by the unseemly low temperatures near month end. High winds were practically nonexistent as there were twenty days when the winds did not reach over $31 \mathrm{~km} / \mathrm{hr}$. November was also a bit gloomy due to 17 days receiving less than one hour of bright sunshine.

A 1958 blizzard during Winnipeg's rush hour traffic did not faze one motorist when his car was brought to a standstill. He simply got out and went to a nearby restaurant for a cup of coffee. When he came back, the traffic had not moved an inch and others, in the same predicament, decided to follow his example. ${ }^{1}$
${ }^{1}$ Phillips,2009

	4 SaskPower   梠新   Ministry of Eneegy and   Eneegy and Resources	Agriculture and Agri-Food Canada	Agriculture et Agroalimentaire Canada	$\int^{*}$ campbellscientifc   Kipp \& Zonen	



## For Your Information

The first decade of the second millennium finished with the December temperatures near normal. The daily temperatures oscillated about their normals with Saskatoonians enjoying 13 days where maximum temperatures were warmer than normal and complaining about 14 days being below their minimum normals. Nine days recorded temperatures less than $-20^{\circ} \mathrm{C}$ but none were less than $-30^{\circ} \mathrm{C}$. On the $27^{\text {th }}$, outdoor enthusiasts were treated to temperatures just above $0^{\circ} \mathrm{C}$. Precipitation occurred on 11 days producing less than half the normal monthly precipitation. On December $14^{\text {th }}$, a new daily record of 4.9 mm was set; the old record of 4.3 mm was set in 1964. Unfortunately, the precipitation was in the form of rain and snow turning some sidewalks and roads treacherous for travel. The year ended with an annual total of 707.4 mm of precipitation; more than double the normal value and almost $30 \%$ above the former record wet year of 1991.
Winter rain causes problems whether you are on foot or travelling by car. With the sharp rise in the price of road salt, alternatives have been tried such as garlic powder, desugared molasses, sugar beet mash, salted sea water and last year's salt residue blended with ash from coal-burning power plants. ${ }^{1}$
${ }^{1}$ Phillips, 2009


## INSTRUMENTS USED AT SASKATOON SRC CRS AND GLOSSARY OF TERMS

(Unless otherwise stated, source for definitions of terms is Environment Canada, 1978)
BEAUFORT WIND SCALE was developed by Admiral Sir Francis Beaufort in 1805 and adopted by the British Navy in 1838. It consisted of 13 degrees of wind strength, from calm to hurricane, based upon the effects of various wind strengths upon the amount of canvas carried by the fully rigged frigates of the period. Over the years it has been modified as needed and in 1946 the scale values (Force Numbers) were defined by ranges of wind speed as measured at a height of 10 meters above the surface. In effect, this transformed the 'Beaufort Wind Force Scale’ into the 'Beaufort Wind Speed Scale'. This scale is the current standard scale for visual observations of the wind (Heidorn, 1998).

BRIGHT SUNSHINE is the unobstructed direct radiation from the sun, as opposed to the shading of a location by clouds or by other atmospheric obstructions.
Missing data is roughly estimated by comparing the global and diffuse radiation values. To estimate if a day received any bright sunshine, the global radiation value must be higher than the diffuse radiation value. To estimate the number of hours of bright sunshine, the percentage of global radiation as compare to its normal is used. For example: February 1-28/2010: [(Global radiation(193.5) x Bright sunshine normal(132.3)] / Global normal(210.1) $=121.8$ hours
Number of Days is defined as the total number of days when at least 0.1 of an hour of bright sunshine was recorded.
Percentage Possible refers to the ratio of measured bright sunshine hours to the total possible daylight hours in a given period, expressed as a percentage.
Possible daylight hours are taken from the sunrise/set tables provided by the National Research Council of Canada, Herzberg Institute of Astrophysics, Victoria, BC.
Total is the sum of the daily bright sunshine values in hours and tenths of hours as measured by an automated sunshine recorder using voltaic cells.

DEGREE-DAY is an index for various temperature related calculations
Cooling (CDD) is the cooling requirement to achieve a stipulated comfort value in an indoor environment. For most purposes, a temperature of greater than $18^{\circ} \mathrm{C}$ is considered uncomfortable and supplementary cooling is required. On a specific day, the amount by which $18^{\circ} \mathrm{C}$ is less than the daily average temperature defines the number of cooling degree-days for that day.
Mathematically: $\mathrm{CDD}=\left(\mathrm{T}-18^{\circ} \mathrm{C}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$ if T is equal to or less than $18^{\circ} \mathrm{C}, \mathrm{CDD}=0$. Monthly and annual values of CDD are obtained by summing daily values.
Growing (GDD) is the growing requirement in order for plant growth to proceed. The air temperature must exceed a critical value appropriate to the plant species in question. For many members of the grass family, including most commercial cereals grown on the prairies, a base temperature of $5.0^{\circ} \mathrm{C}$ has been established. On a specified day, the difference between the daily average temperature and the $5.0^{\circ} \mathrm{C}$ base temperature defines the number of growing degree-days.
Mathematically: $\mathrm{GDD}=\left(\mathrm{T}-5.0^{\circ} \mathrm{C}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$ if T is equal to or less than $5.0^{\circ} \mathrm{C}, \mathrm{GDD}=0$. Daily GDD values are summed to provide totals for the appropriate month, growing season or year.
Heating (HDD) is the heating requirement to achieve a stipulated comfort value in an indoor environment. For most purposes, a temperature of less than $18^{\circ} \mathrm{C}$ is considered uncomfortable and supplementary heating is required. On a specific day, the amount by which $18^{\circ} \mathrm{C}$ exceeds the daily average temperature defines the number of heating degree-days for that day.
Mathematically:
HDD $=\left(18^{\circ} \mathrm{C}-\mathrm{T}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$ if T is equal to or greater than $18^{\circ} \mathrm{C}, \mathrm{HDD}=0$. Monthly and annual values of HDD are obtained by summing daily values.

EXTREME is the highest or lowest value of a particular element recorded during the period in question.
EXTREME ALL YEARS Temporal comparisons at a point are also of value in some types of climatic studies. Therefore, it is desirable to produce the maximum length of reliable climatic record to carry out studies over a period of time. Data are drawn from various stations that have been/are located within Saskatoon from 1892 to the present. Station locations, exposures and measurement procedures were subject to change during this time period. Data are not adjusted and users are cautioned accordingly.

FROST is recorded on each occasion when the daily minimum temperature is equal to or less than $0^{\circ} \mathrm{C}$.

NORMAL VALUE (1971-2000) In climatology it is often useful to make spatial comparisons of particular element values over a common time period. At an interior continental site such as Saskatoon, a period of 30 years is required to produce statistically stable estimates of the more variable elements. To facilitate spatial comparisons, the World Meteorological Organization recommends the standard normal (average) period of thirty years. The current normal period for data analysis at CRS is from January 1 ${ }^{\text {st }}, 1971$ to December 31 ${ }^{\text {st }}$, 2000. Data derived from CRS conform to this standard, except where noted. The normals for CRS have been calculated using the data collected during this standard period. Where gaps existed, data from the nearest climate station were used and referenced as to being used. (Environment Canada, 1993, 2002, 2004a)

POTENTIAL EVAPOTRANSPIRATION (Thornthwaite Method) is the amount of water which will be lost from a surface completely covered with vegetation if there is sufficient water in the soil at all times for the use of the vegetation. It is computed by means of an empirical formula involving mean monthly temperature and average length of day.
Mathematically:PET $=\mathrm{mT}^{\mathrm{a}}$ where PET $=$ Potential of Evaportranspiration; $\mathrm{m}=\%$ of day length for the month as compared to the year; $\mathrm{T}=$ Temperature ${ }^{\circ} \mathrm{C}$ when T is less than or equal to 0 ; otherwise $\mathrm{T}=\mathrm{O}$; and $\mathrm{a}=$ yearly heat index. (Thornthwaite and Mather, 1955)

## PRECIPITATION

Day is recorded on occasions when the amount of precipitation in a 24 -hour period equals or exceeds 0.2 mm water. An asterisk $\left(^{*}\right)$ appearing in the average column denotes the occurrence of measurable precipitation on one or more occasions, and that the calculated 30-year average amounts to less than a trace. The so-called climatological day, beginning at 9 a.m. standard time on the date of reference and ending at 9 a.m. the next morning, was employed in record keeping up to January 1994. On February 1, 1994, after consultation with Environment Canada, record keeping was changed to the 24 -hour period of 0000 hours -2400 hours to conform to their reporting of climatological statistics.
Total is the sum of the daily recorded precipitation. The snowfall component of precipitation is recorded as an equivalent amount of liquid water. For particulars on precipitation measurement procedures and instruments, the reader is referred to the Environment Canada publication "Manual of Climatological Observation's", 2nd Ed., January, 1978. The notation "T" refers to a trace of precipitation (less than 0.2 mm water equivalent). As of August 7, 1993, total precipitation was measured using a weighing gauge for the winter season and the tipping bucket during frost-free period.

SEASONS Meteorologists prefer to divide the year into four 3-month periods based primarily on temperature. Thus winter is defined as December (previous year), January, and February (DJF); spring as March, April and May (MAM); summer as June, July and August (JJA); and fall as September, October and November (SON). (Lutgens and Tarbuck, 1992)

SOIL TEMPERATURE under a short grass surface with normal snow accumulation, is measured according to procedures outlined in the Environment Canada publication "Soil Temperature" January 1, 1976. Depths below surface at which soil temperature measurements are made are: $5 \mathrm{~cm}, 10 \mathrm{~cm}, 20 \mathrm{~cm}, 50 \mathrm{~cm}, 100 \mathrm{~cm}, 150 \mathrm{~cm}$ and 300 cm . Since soil temperature is affected by profile structure and water content, extrapolation of the measured data is difficult.

## SOLAR RADIATION

Diffuse - Total is radiation reaching the earth's surface after having been scattered from the direct solar beam. The instrument used is an Eppley pyranometer with a shade ring (See SOLAR RADIATION-Global- Total).
Global - Total is the sum of the direct solar and diffuse radiation during the period in question. Measurements are carried out on a horizontal surface near ground level and integrated over the whole celestial dome, summing the diffuse and direct components of the solar beam. The temperature-compensated Eppley pyranometer is used. The standard metric unit of measurement is the megajoule per square metre ( $\mathrm{MJ} / \mathrm{m}^{2}$ ). (To facilitate comparison with past years' data: $1.0 \mathrm{MJ} / \mathrm{m}^{2}=23.895$ langleys). Comparison is provided with a provisional average based on 16 years of data (1975-1990).

## SPELLS

Temperature spells are defined as days when the daily maximum temperature is higher than or equal to $30^{\circ} \mathrm{C}$ (hot spell) or the daily minimum temperature is lower than or equal to $-30^{\circ} \mathrm{C}$ (cold spell).
Precipitation spells are defined as days when precitation is recorded (wet spell) or not (dry spell).

SUNRISE/SUNSET times have been included in this report. They have been acquired from the National Research Council, Canada, Herzberg Institute of Astrophysics.

## TEMPERATURE

Average Annual is the average of the daily average temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ for one year.
Average Daily is defined as the arithmetic mean of the daily maximum temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ and the daily minimum temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ for the day in question.
Average Maximum is the average of the daily maximum temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ average over the appropriate time periods. For details concerning measurement procedures, the reader is referred to the Environment Canada publication, "Manual of Climatological Observations", 2nd Ed., January, 1978.
Average Minimum is the average of the daily minimum temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ averaged over the appropriate time periods. Refer to TEMPERATURE-Average Maximum concerning measurement procedures.
Average Monthly is the average of the daily average temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ for the month under consideration.

WIND CHILL describes a sensation, the way we feel as a result of the combined cooling effect of temperature and wind. This feeling can't be measured using an instrument, so a mathematical formula was developed in 1939 that related air temperature and wind speed to the cooling sensation. This formula was revised in 2001 by a team of scientists and medical experts from Canada and the U.S. with the Canadian Department of National Defence contributing human volunteers. The new index is based on the loss of heat from the face (Environment Canada 2004b).

WAVES - Temperature waves are defined as a sequence of three or more days when the daily maxiumum/minimum temperatures are higher/lower than, or equal to, a set temperature. For a heat wave the temperature is $32^{\circ} \mathrm{C}$. (Environment Canada 2005).

## WIND SPEED

Average is the average of the hourly wind speeds for the period in question measured in kilometres per hour (km/h). Average hourly wind speeds are obtained from a RM Young Wind Monitor anemometer at a height of 10 m .

Peak Gust refers to the highest instantaneous value recorded by the anemometer system for the period of reference, irrespective of direction and/or duration. Comparison is with published data for Environment Canada, Saskatoon Airport station.

## see also Beaufort Wind Scale

## REFERENCES AND BIBLIOGRAPHY

Bellis, M., nd a. Who Invented the Umbrella? in About.com. Inventors. http://inventors.about.com/0d/uvstartinventions/a/ Umbrella.htm. (accessed August 17, 2010).

Bellis, M., nd b. Luke Howard and the History of Cloud Naming in About.com. Inventors. http://inventors.about.com/od/ britishinventions/a/clouds.htm. (accessed August 17, 2010).

Canadian Broadcasting Corp., 2007. CBC News in Depth: Forces of nature; Snow. http://www.cbc.ca/news/background/ forcesofnature/snow.html (accessed February 2, 2010).

Christiansen, E.A. (Ed.), 1970. Physical Environment of Saskatoon, Canada. Saskatchewan Research Council, Saskatoon, SK, in cooperation with National Research of Canada, Ottawa, ON.

Environment Canada, Atmospheric Environment Service (AES), 1975. 1974 Annual Meteorological Summary. AES, Saskatoon, SK.

Environment Canada, Atmospheric Environment Service (AES), 1976. Soil Temperature. AES, Downsview, ON
Environment Canada, Atmospheric Environment Service (AES), 1978. Manual of Climatological Observations, 2nd Ed. AES, Downsview, ON

Environment Canada, Atmospheric Environment Service (AES), 1992. AES Guidelines for Co-operative Climatological Autostation. Environment Canada, Downsview, ON.

Environment Canada, Atmospheric Environment Service (AES). 1993. Canadian Climate Normals 1961-1990. Canadian Climate Centre, Downsview ON.

Environment Canada, Meteorological Service of Canada, 2002. Canadian Daily Climate Data on CD-ROM - Western Canada. Climate and Water Products Division, Downsview, ON.

Environment Canada, Meteorological Service of Canada, 2004a. Climate Data Online/Climate Normals and Averages. http://www.climate.weatheroffice.ec.gc.ca/climate_normals/index_e.html (accessed 2004, 2007).

Environment Canada, Meteorological Service of Canada, 2004b. Wind Chill Calculation Chart. http://www.msc.ec.gc.ca/ education/windchill/windchill_chart_e.cfm (accessed April, 2009).

Environment Canada, Meteorological Service of Canada, 2005. Fact Sheet - Summer Severe Weather Warnings. http://www.on.ec.gc.ca/severe-weather/summerwx_factsheet_e.html (accessed Feb 2008).

Goble, R. J., 2002. Volcanoes. In: Introduction to Geology/Physical Geology. http://www.class.unl.edu/geol100/ Review2.html (accessed June, 2002)

Godwin, B., 2010. Personal Communication. July, 2010. Saskatchewan Research Council, Saskatoon, SK.
Heidorn, K., 1998. The Weather Legacy of Admiral Sir Francis Beaufort In: Weather People and History. http:// irishculture.about.com/gi/dynamic/offsite.htm?site=http://www.islandnet.com/\%7Esee/weather/history/ beaufort.htm (accessed July 30, 2001).

Heidorn, K., 2002. Hailstone Sizes. In: Weather Doctor’s Weather Eyes. http://www.islandnet.com/~see/weather/eyes/ hailsize.htm (accessed July 7, 2010).

Ladd, M.G., 2008. Ladds of New England: Ancestral line of Merle G. Ladd. http://www.laddfamily.com (accessed April 29, 2009)

Lutegens, F. K. and E.J. Tarbuck, 1992. The Atmosphere: An Introduction to Meteorology, 5th Ed.. Prentice Hall, New Jersey.
National Research Council of Canada, Herzberg Institute of Astrophysics, n.d. Sunrise - Sunset Tables for Saskatoon http://www.hia-iha.nrc-cnrc.ca/sunrise_e.html (accessed January 2009, 2010).

Olm, O., 2001. Personal Communication. September 17, 2001. Saskatchewan Research Council, Saskatoon, SK.
Phillips, D.W., 1993. The Day Niagara Falls Ran Dry!: Canadian weather facts and trivia. Key Porter Books Limited, Toronto, Ontario.

Phillips, D.W., 2009. 2010 Canadian Weather Trivia Calendar. Fifth House Ltd., Calgary, AB.

The Southwest Booster, 2008. Take care of Your Heart when Shoveling Snow this Winter. http://www.swbooster.com/Living/ Health/2008-12-11/article-5821/Take-care-of-your-hea... (accessed February 2, 2010)

Thornthwaite, C.W. and J. R. Mather, 1955. The Water Balance. Publications in Climatology Vol. 8, No.1. Drexel Institute of Technology, Laboratory of Climatology, Centerton, New Jersey.
U.S. Geological Survey. Cascades Volcano Observatory, n.d. Deadliest Volcanic Eruptions Since 1500 A.D. http:// vulcan.wr.usgs.gov (accessed March 27, 2002)

World Meteorological Organization (WMO). 1988. Technical Regulations: General Meteorological Standards and Recommended Practices, 1988 ed., Suppl. No. 2 (IV. 1996), WMO - No. 49. Geneva, Switzerland.


[^0]:    ${ }^{1}$ Environment Canada 2002

