smart science solutions
Environment and Minerals Division Climatology

Saskatchewan Research Council
 CLIMATOLOGICAL REFERENCE STATION SASKATOON

C. Beaulieu
V. Wittrock

Saskatchewan Research Council

CLIMATOLOGICAL REFERENCE STATION

SASKATOON

Environment and Minerals Division
Climatology

ACKNOWLEDGEMENTS

The 2005 data was compiled and recorded by Carol Beaulieu with assistance from Virginia Wittrock, Charlene Hudym and Leanne Crone. Miss Beaulieu was responsible for the monitoring of the site while instrument maintenance was carried out by Brett Smith of the Instrumentation Group of the Manufacturing and Valueadded Processing Section of the Saskatchewan Research Council (SRC). Elaine Wheaton and Virginia Wittrock assisted with the proofreading and editing of this report. Consultations with Larry Flysak and Don Ryback of the Meteorological Service of Canada (MSC), Saskatoon, SK, were most helpful in verifying and comparing data.

Although every caution has been taken to ensure the accuracy of data and information presented, errors may have occured. If errors are noticed, we would appreciate being informed so they can be corrected. Our data is subject to on-going quality assurance checks which may result in minor changes and updates to some values presented here and in previously presented reports.

Information and data contained in this report shall not be published, copied, placed in a retrieval system or distributed whole or in part without prior written consent of the Saskatchewan Research Council. All references made to this report shall be acknowledged.

Enquiries concerning the SRC Climatological Reference Station (CRS), its data, measurement programs and publications, or becoming a sponsor are most welcome. For further information contact:

Elaine Wheaton
Senior Research Scientist 306-933-8179
e-mail wheaton@src.sk.ca

Virginia Wittrock
Research Scientist 306-933-8122
e-mail wittrock@src.sk.ca
e-mail beaulieu@src.sk.ca

Climatology Section
Fax 306-933-7817
Saskatchewan Research Council
Web Site Home Page
http://www.src.sk.ca

SASKATCHEWAN RESEARCH COUNCIL CLIMATE REFERENCE STATION SPONSORS, 2005

Agriculture et Agroalimentaire Canada

4 SaskPower

Saskatchewan Agriculture and Food

Saskatchewan Environment

COVER PHOTOGRAPH
Hoar Frost on Saskatoon trees, nd by CR Beaulieu, Climatology, SRC

TABLE OF CONTENTS

Acknowledgements 2
Climate Reference Station Sponsors, 2005 2
Table of Contents 3
Climate Reference Station History 4
What is the Climate Reference Station? 5
Climate Reference Station Outreach 2005 6
Summaries for 2005
Overview 7
Weather events summaries
Temperature rankings 8
Dates and duration of the frost-free season 8
New 2005 records 9
Extreme tempeatures for 2005 9
Extreme daily winds for 2005 9
Annual and seasonal precipitation rankings 10
Greatest extreme precipitation events 10
Ranking of monthly precipitation 10
SRC Climate Reference Station daily temperature record for 2005 11
SRC Climate Reference Station daily precipitation record for 2005 12
Monthly summaries - tables and graphs
Monthly temperatures and extreme values for 2005 and annual temperatures (1964-2005) 13
Monthly precipitation and extreme values for 2005 and total annual precipitation (1964-2005) 14
Monthly heating and cooling degree-days, 2005 15
Monthly growing degree-days, 2005 16
Potential evaporation (PET) using the Thornthwaite Method, 2005 16
Sunrise and sunset at Saskatoon, 2005 and 2006 17
Bright sunshine for 2005 and annual trend 18
Global and diffuse solar radiation, 2005 19
Monthly average soil temperatures, 2005 20
Monthly average wind speed and extreme gusts, 2005 21
Windchill calculation chart 21
Annual weather summary of elements 22
Monthly weather summaries of elements 23
Instruments used at Saskatoon SRC CRS and Glossary of Terms 35
References and Bibliography 38

CLIMATE REFERENCE STATION HISTORY

Meteorological observations were first taken at or near Saskatoon by the Royal Northwest Mounted Police in 1889 with only temperature being recorded. There is some disagreement in the early records as to the exact location of the weather observing point, but the majority of the evidence indicates $52^{\circ} 15^{\prime} \mathrm{N}, 106^{\circ} 20^{\prime} \mathrm{W}$, elevation 480 m above sea level as the most probable location. This would place it at Clark's Crossing on the South Saskatchewan River, approximately 16 km northeast of the centre of the City of Saskatoon. At that time, there was a settlement at Clark's Crossing as well as 10 to 15 families on either side of the river where Saskatoon is now located.

Little is known about the very early observers; however, the records do show that Major T.H. Keenan took observations from March 1892 until March 1895, and Mr. George Will was the observer from January 1897 until April 1897. It is thought that T. H. Copeland was involved in the observational program from 1895 to May 1, 1901, at which time it was taken over by Mr. Eby, Sr. Mr. Eby, Sr. recorded the observations until his death in 1921, at which time his daughter, Miss E.S. Eby, continued to record the observations. Her brother, Mr. J.M. Eby, recorded the observations beginning in April 1931 until the station was closed October 31, 1942. The Eby station recorded temperature, precipitation and weather notes on fog, thunderstorms, winds and any unusual weather phenomena. Reports were made twice daily, morning and evening.

In 1916, a climatological station was established by the Physics Department of the University of Saskatchewan and continuous observations were kept twice daily until January 15, 1965. The longtime observer was Mr. Sidney Cox. The Saskatchewan Research Council took over the programme in the fall of 1963 at the newly established Climatological Reference Station at latitude $52^{\circ} 09^{\prime} \mathrm{N}$, longitude $106^{\circ} 36^{\prime} \mathrm{W}$ and elevation 497 m asl ${ }^{1}$. The first observer was Terry Beck followed three years later by Orville Olm. ${ }^{2}$ In 1967, Joe Calvert became the primary observer until his retirement in 1983. Ray Begrand succeeded Mr. Calvert until 1988 when Virginia Wittrock became the primary observer. Since 1992, the primary observer has been Carol Beaulieu assisted by Virginia Wittrock, Leanne Crone and Charlene Hudym.

In the summer of 1992, the CRS began to be converted to an automated system of data collection with the installation of a Campbell Scientific data logger and automatic sensors. Elements presently recorded at the site are temperature, precipitation, wind, solar radiation, relative humidity, barometric pressure, soil temperature and snow-on-theground (manual recordings). Temperature, precipitation and radiation data are submitted to Environment Canada.

WHAT IS THE CLIMATE REFERENCE STATION?

The Saskatchewan Research Council's Climate Reference Station (SRC CRS) at Saskatoon is classified as a principal climatological station with supplementary climatological observations. ${ }^{1}$ A reference climatological station's data are intended for the purpose of determining climatic trends. This requires long periods (not less than thirty years) of homogeneous records, where man-made environmental changes have been or are expected to remain at a minimum. Ideally the records should be of sufficient length to enable the identification of secular changes of climate ${ }^{2}$. At our station, hourly readings are taken of elements which include temperature, precipitation amount, humidity, wind, and atmospheric pressure. Our supplemental observations include rate of rainfall, soil temperature, bright sunshine and solar radiation. High quality and consistent climatological observations are maintained providing data sets to meet the current concerns of the effects of climatic change and increased variability.

Purpose and Benefits

The purpose of the SRC CRS is to provide a record of observed meteorological elements so that the climate of the area and its changes can be accurately documented and described. Climatological data have assumed new importance as a result of social and environmental issues in which climate is a dominant factor. Climatological information assists in realizing new technological opportunities and social changes. It is necessary and valuable for areas such as agriculture, forestry, land use and facility placement, water and energy resources, health and comfort.

The CRS also allows us to:

- evaluate long term climate trends - early warning system for increased frequencies of extreme events such as drought, floods, etc.;
- determine the impacts of climate events on society, economy, health, and ecosystems - e.g. intense rainfall causing flooding and property damage, heat stress with its implications for health, West Nile monitoring programme directed by Saskatchewan Health;
- do value-added research;
- be part of regional, national and global networks in an important agricultural and ecological area;
- facilitate development of additional programs - e.g. air quality, biodiversity, and climate change monitoring;
- have roles in various programs within SRC including SODAR Evaluation Project, spray drift work, Boreal Ecosystem Atmosphere Study (BOREAS), and collaborative research with the Western College of Veterinary Medicine and the College of Agriculture, University of Saskatchewan, for example; and
- provide climate data to governments, universities, insurance agencies, lawyers, agricultural sectors, chemical companies, schools, building science, construction firms, media, transportation studies, accident studies, wildlife studies, tourism groups and interested individuals.

Goals

The goals of the Climate Reference Station are first, to maintain the high quality of data gathered over its more than forty years of existence at its current location and, second, to continue to monitor a large variety of elements. These various elements combined with the long-term collection period as well as the stable location allow

CLIMATE REFERENCE STATION OUTREACH 2005

This year, five schools, urban and rural, requested presentations on weather instruments and the climate of Saskatoon. Both were well received by students and staff with positive post-presentation feedback. Approximately 170 children from grades 1 to 6 participated in the outreach programme. The SPLIT programme (Schools Plant Legacy in Trees) requested the presentations for their participants. Students received hands-on experience with the weather instruments used to measure temperature, precipitation, wind and solar radiation. The computer presentation gave them a better understanding of Saskatoon's climate; past, present and future.

We were again pleased to cooperate with SaskHealth in its West Nile mosquito monitoring programme this year. A New Jersey Light Trap was installed to collect mosquitoes, including Culex tarsalis, the main vector that carries the West Nile virus, from May to September.

CRS began hosting a Sonic Detection and Ranging (SODAR) system in late 2005. SODAR is used to remotely measure the vertical turbulence structure and wind profile of the lower layer of the atmosphere. By using sound, it measures wind speed, wind direction and turbulent characteristics of the atmosphere without the necessity of erecting a 10 m tower.

On June $27^{\text {th }}$, we held an open house at the Climate Reference Station to celebrate both our $41^{\text {st }}$ anniversary and our supporters by unveiling a new sign. We were pleased with the attendance and news coverage of this event.
 photo credit: K Potter

SUMMARIES FOR 2005

Overview

Data concerning temperature, precipitation, wind speed and direction, bright sunshine, solar radiation, and soil temperature, recorded at the Saskatchewan Research Council (SRC) Climatological Reference Station (CRS) $\left(52^{\circ} 09^{\prime} \mathrm{N}, 106^{\circ} 36^{\prime} \mathrm{W}, 497 \mathrm{~m}\right.$ asl), are presented for the year 2005 and compared with the long-term (circa 19002004) and standard-period (1971-2000) records.

Average temperatures, ranging from $1.0^{\circ} \mathrm{C}$ to $5.9^{\circ} \mathrm{C}$ above normal for the last four months of 2005 , insured that 2005 would be amongst the warmest years at the Climate Reference Station. The annual mean, $1.3^{\circ} \mathrm{C}$ above normal, was the $7^{\text {th }}$ warmest year out of 42 at CRS. The annual maximum temperature was the $10^{\text {th }}$ warmest and the annual minimum temperature was $5^{\text {th }}$ warmest. The minimum is notable for its $1.8^{\circ} \mathrm{C}$ above normal temperature. January, with six days of $-30^{\circ} \mathrm{C}$ temperatures, gave no indication of a warm year in the offing. As it turned out, these were the only really cold days of the year. February's monthly average maximum of $8.3^{\circ} \mathrm{C}$ broke the 2002 record by $0.4^{\circ} \mathrm{C}$ $\left(2.1^{\circ} \mathrm{C}\right.$ above normal). Nine daily high maximum records were set or tied during the year; four of which were in December. Only three daily low minimum temperatures were set, none of which were in the traditional cold months. Hot spells of above $30^{\circ} \mathrm{C}$ temperatures occurred on 11 days with six in July and three in August. Although the frostfree growing season was longer than normal with 136 days, it could not compensate for the below normal growing degree-days especially those that occurred in May and June. The last frost occurred on May $14^{\text {th }}$, four days earlier than normal and the first occurred September $28^{\text {th }}, 14$ days later than normal. With such a warm year, the cumulative heating degree-days were below normal throughout the year. Surprisingly, the cumulative cooling degree-days were also below normal indicating that the higher annual temperatures were not due to higher maximum temperatures but due to higher minimum temperatures.

Yearly precipitation was 39.8% above normal ranking 2004 as the $2^{\text {nd }}$ wettest year out of $42 ; 60.1 \mathrm{~mm}$ less than the record year of 1991. June and September contributed 52% of the total precipitation due to downpours on June $29^{\text {th }}$ and September $10^{\text {th }}$ and $11^{\text {th }}$. Seasonally, summer (JJA) was the wettest ever summer recorded at the station while autumn (SON) was the $4^{\text {th }}$ wettest autumn. By late August, the total yearly rainfall had surpassed the annual normal. 2005 set 14 daily precipitation records; four of which were in June and three in September. June and September also set monthly maximum precipitation records. This year, with 135 precipitation days, was 23 days less than the record year of 2004. This makes it the $6^{\text {th }}$ highest year for precipitation days.

Up until November $30^{\text {th }}$, bright sunshine hours were 96.0% of normal with the number of days slightly above normal. June set a dubious record for the least amount of bright sunshine hours for that month while October recorded 0.1 hour shy of 1988 's record for the most hours for the month of October. Bright sunshine was not recorded at the site for December due to the instrument's routine calibration.

Extreme daily winds of over $51 \mathrm{~km} / \mathrm{h}$ occurred 40 times. Spring and summer were the windiest seasons; each recording 16 days of winds over $51 \mathrm{~km} / \mathrm{h}$. May, July and September experienced 'Gale' winds ($63-76 \mathrm{~km} / \mathrm{h}$) while 'Violent Storm' winds were measured once from the SW during the early morning June $22^{\text {nd }}$. Extreme winds only combined twice with temperatures to produce extreme windchills; on January $21^{\text {st }}$ it felt like $-48^{\circ} \mathrm{C}$ and on January $22^{\text {nd }}$ it felt like $-50^{\circ} \mathrm{C}$.

Weather Events Summaries, 2005

TEMPERATURE RANKINGS 1964 to Present						
WAR AN MAXI TEMPER	ST AL JM URE ${ }^{\circ} \mathrm{C}$	COLDEST ANNUAL MINIMUM TEMPERATURE ${ }^{\circ} \mathrm{C}$		WARMEST ANNUAL AVERAGE TEMPERATURE ${ }^{\circ} \mathrm{C}$		RANKING
1987	11.6	1966	-5.5	1987	5.4	1
2001	10.8	1979	-5.3	2001	4.6	2
1981	10.5	1982	-5.3	1981	4.5	3
1988	10.1	1965	-5.3	1998	4.3	4
1998	10.1	1996	-5.2	1999	4.2	5
1999	9.8	1975	-5.1	1988	3.9	6
1976	9.5	1972	-4.8	2005	3.8	7
1997	9.5	1985	-4.8	1997	3.5	8
2003	9.3	1967	-4.7	2003	3.4	9
2005	9.1	1974	-4.7	1991	3.2	10
1986	9.0	1971	-4.6	1986	3.2	11
1991	8.9	1969	-4.6	1976	3.0	12
2000	8.8	1978	-4.6	1992	3.0	13
1984	8.7	1970	-4.0	2000	3.0	14
1990	8.7	1973	-4.0	1984	2.9	15
1977	8.6	1980	-3.8	1993	2.8	16
1980	8.6	1989	-3.8	2004	2.8	17
1992	8.5	1977	-3.6	2002	2.8	18
2002	8.5	1990	-3.6	1964	2.7	19
1994	8.5	1976	-3.5	1994	2.7	20
2004	8.4	1968	-3.4	1990	2.6	21
1989	8.3	1995	-3.4	1977	2.5	22
1964	8.2	1983	-3.2	1980	2.4	23
1993	8.1	1994	-3.2	1989	2.3	24
1995	7.9	1964	-2.9	1995	2.3	25
1973	7.8	2000	-2.9	1983	2.2	26
1968	7.7	1984	-2.9	1968	2.2	27
1983	7.7	2002	-2.9	1973	1.9	28
1978	7.4	2004	-2.8	1970	1.7	29
1970	7.3	1986	-2.6	1978	1.4	30
1974	7.1	1992	-2.5	1971	1.2	31
1971	7.1	1991	-2.5	1974	1.2	32
1967	7.0	1993	-2.5	1967	1.1	33
1985	6.9	2003	-2.5	1969	1.1	34
1975	6.9	1997	-2.4	1985	1.1	35
1969	6.8	1988	-2.3	1975	0.9	36
1979	6.5	2001	-1.6	1972	0.6	37
1966	6.4	2005	-1.6	1979	0.6	38
1965	6.3	1998	-1.5	1965	0.5	39
1982	6.2	1981	-1.5	1966	0.4	40
1996	6.1	1999	-1.5	1996	0.4	41
1972	6.1	1987	0.8	1982	0.4	42

DATES AND DURATION OF THE FROST-FREE SEASON					
1964 to Present				\left\lvert\,	DATE
:---:					
YEAR LAST					
SPRING					
FROST		DATE OF			
:---:					
FIRST FALL					
FROST		LENGTH OF			
:---:					
SEASON					
(days)	\right.				

NEW 2005 RECORDS			
TYPE	DATE	NEW RECORD	OLD RECORD/year
Daily Maximum Temperature (${ }^{\circ} \mathrm{C}$)	January 25	4.4	2.5/1993
	February 2	8.3	6.5/1991
	April 7	23.7	19.5/1987
	June 22	32.0	31.7/1970
	July 6	31.3	31.1/1975\&79
	December 9	7.4	6.1/1981
	December 11	6.4	6.0/1980
	December 25	5.3	5.0/1999
	December 26	4.5	4.5/1989
Daily Minimum Temperature (${ }^{\circ} \mathrm{C}$)	May 14	-6.0	-3.6/1997
	July 28	5.8	6.0/1985
	October 4	-6.5	-6.1/1974
DailyPrecipitation (mm)	February 4	7.7	3.6/1967
	March 6	8.5	7.2/1988
	June 18	18.0	17.4/1986
	June 22	28.6	16.7/1991
	June 28	8.6	6.6/1965
	June 29	58.8	23.1/1971
	July 30	9.2	8.0/1989
	August 24	4.4	3.7/1989
	August 30	7.6	7.2/2002
	September 10	35.6	8.9/1974
	September 11	25.4	17.8/1986
	September 22	4.2	2.4/2002
	October 27	1.3	1.0/1970\&71
	November 2	11.3	6.7/1984
Monthly Maximum Temperature (C°)	February	8.3	7.9/2002
MonthlyPrecipitation (mm)	June	171.0	160.1/1999
	September	81.6	71.6/1969
Least Monthly Bright Sunshine Hours	June	175.3	185.5/1998
Most Monthly Bright Sunshine Hours	October	208.0	208.1/1988

EXTREME TEMPERATURES FOR 2005			
COLD SPELL (less than or equal to -30°)	HOT SPELL (greater than or equal to $30^{\circ} \mathrm{C}$)		
DATE	TEMPERATURE ${ }^{\circ} \mathrm{C}$	DATE	TEMPERATURE ${ }^{\circ} \mathrm{C}$
January 5	-31.2	June 22	32.0
January 13	-32.8	July 6	31.3
January 14	-34.5	July 8	32.4
January 15	-30.7	July 9	32.4
January 16	-33.2	July 12	31.2
January 22	-30.3	July 13	32.6
	July 31	32.8	
	August 1	31.6	
	August 5	31.5	
	August 29	31.4	
	September 3	30.8	

Brett Smith remounting the Global and Diffuse pyranometers after calibration, April, 2005 photo credit: CR Beaulieu

EXTREME DAILY WINDS FOR 2005 (km/h)		
DATE	WIND SPEED/ DIRECTION	BEAUFORT WIND SCALE DESIGNATION
年		

Virginia Wittrock adjusting the Diffuse shade ring, June 2005 photo credit: Karen Potter

ANNUAL AND SEASONAL PRECIPITATION RANKINGS										
DRIE	EARS	DRIEST WINTER (Dec. Jan. Feb.) (mm)		DRIEST SPRING (Mar. Apr. May) (mm)		DRIEST SUMMER (Jun. Jly. Aug.) (mm)		DRIEST AUTUMN (Sep. Oct. Nov.) (mm)		RANKING
2001	165.8	2002	12.1	2002	20.3	1984	70.2	1999	17.2	1
1987	232.4	1984	19.2	1998	29.8	1964	73.9	1994	21.0	2
2003	257.7	1993	22.0	2001	34.0	1977	81.9	1976	21.8	3
1998	263.3	1998	22.4	1980	42.2	2001	91.2	1987	27.4	4
1981	279.8	2001	23.1	1965	43.2	1985	91.8	2001	28.5	5
1964	282.7	2003	29.2	1981	54.3	1987	92.6	2000	31.2	6
1988	285.7	2004	29.3	2004	55.4	1969	105.5	1972	32.3	7
1992	288.1	1987	30.6	1992	55.5	1992	115.6	1990	33.9	8
1997	291.4	1995	31.3	1988	55.6	1997	116.4	1971	34.2	9
1984	293.1	1999	31.3	1999	56.5	1980	120.3	1988	38.1	10
1999	297.7	2000	31.7	1984	57.2	1981	124.9	1974	40.0	11
1993	300.0	1988	35.9	1996	58.8	2003	126.2	1975	48.8	12
1980	305.9	1982	37.0	2000	59.2	1972	133.3	2004	50.0	13
1990	309.8	1967	37.9	1971	61.1	1998	133.4	1966	50.2	14
2000	315.4	1991	40.3	1966	61.2	1979	135.9	1965	50.9	15
1972	317.9	1983	41.1	2003	61.8	1967	139.9	2003	51.2	16
2002	320.0	1977	43.1	2005	62.1	1978	142.5	1995	52.6	17
1995	327.7	1994	45.1	1993	62.2	1975	144.5	1979	53.4	18
1985	330.6	2005	45.4	1995	65.4	1990	144.5	1985	55.2	19
1976	331.8	1964	47.9	1970	65.7	1988	148.9	1970	56.4	20
1996	340.6	1997	48.0	1964	65.8	1989	149.9	1981	61.4	21
1994	341.4	1996	51.0	1969	68.5	1993	151.0	1997	61.6	22
1979	352.0	1981	52.2	1976	69.1	1996	154.4	1989	64.5	23
1967	354.3	1985	52.3	1972	71.6	1973	156.1	1977	65.4	24
1978	358.1	1970	52.7	1978	72.8	1995	164.4	1992	65.9	25
1965	358.8	1968	53.8	1973	73.1	1994	165.6	1980	66.6	26
1977	370.5	1966	54.7	1987	73.6	1976	169.4	1998	70.0	27
1966	376.9	1992	55.0	1967	78.0	2000	183.8	1968	71.3	28
1989	384.8	1990	55.6	1986	82.5	1999	194.2	2002	72.8	29
1970	388.8	1986	57.2	1990	87.2	1986	196.2	1993	73.1	30
1975	392.3	1989	57.9	1979	87.3	1974	205.5	1996	74.4	31
1973	393.3	1971	60.4	1997	88.2	1965	206.6	1967	76.8	32
2004	404.5	1979	61.3	1968	97.6	2002	206.8	1964	77.4	33
1986	411.3	1978	63.0	1989	101.7	1982	208.4	1982	81.5	34
1971	414.6	1973	63.2	1994	109.4	1983	215.8	1986	87.2	35
1969	427.4	1975	67.3	1982	110.8	1970	216.5	1973	88.2	36
1982	436.2	1965	69.3	1975	119.6	1966	222.0	1983	96.2	37
1968	443.1	1976	69.5	1983	125.2	1968	225.9	1991	105.4	38
1974	462.7	1980	73.0	1985	134.3	1971	248.8	2005	109.4	39
1983	471.6	1972	92.2	1991	147.3	1991	251.6	1978	111.4	40
2005	486.8	1974	92.2	1974	148.0	2004	260.0	1984	137.0	41
1991	546.9	1969	98.1	1977	164.1	2005	269.4	1969	151.8	42

GREATEST EXTREME PRECIPITATION EVENTS (mm)*		
PERIOD	DATE	AMOUNT
0.5 hour	June 22	13.2
0.5 hour	September 11	9.6
1 hour	June 22	21.2
1 hour	September 11	15.0
2 hours	June 22	28.4
2 hours	June 29	19.6
12 hours	June 29	58.4
12 hours	September 10	35.4
${ }^{\text {recorded daily }}$ by tipping bucket April $1^{\text {st }}$ to October $3^{3 / d}$		

DRIEST MONTH BY \% OF NORMAL PRECIPITATION		RANKING	DRIEST MONTH BY PRECIPITATION AMOUNT (mm)	
April	54.2	1	October	10.2
October	62.2	2	April	12.8
May	66.4	3	December	13.5
December	73.8	4	January	16.0
July	76.5	5	February	16.4
January	87.9	6	November	17.6
November	118.9	7	March	19.9
March	122.8	8	May	29.4
Feb	123.3	9	July	44.4
Aug	149.2	10	August	54.0
September	277.6	11	September	81.6
June	287.4	12	June	171.0

Monthly Temperatures and Extreme Values for 2005 and
Annual Temperatures (1964-2005)

MONTH	AVERAGE MAXIMUM TEMPERATURE (${ }^{\circ} \mathrm{C}$)		AVERAGE MINIMUM TEMPERATURE (${ }^{\circ} \mathrm{C}$)		AVERAGE TEMPERATURE (${ }^{\circ} \mathrm{C}$)		EXTREME VALUES TEMPERATURE (${ }^{\circ} \mathrm{C}$)	
	2005	Normal	2005	Normal	2005	Normal	Maximum/Date	Minimum/Date
January	-11.9	-11.6	-21.6	-21.8	-16.8	-16.7	4.4/25	-34.5/14
February	-5.2	-7.7	-15.7	-17.6	-10.5	-12.6	8.3/02	-26.5/07
March	-0.5	-0.7	-8.9	-10.5	-4.7	-5.6	8.7/30	-18.3/16
April	12.9	10.7	0.4	-1.7	6.7	4.5	24.1/08	-5.1/30
May	17.4	18.6	4.2	4.7	10.8	11.6	25.6/16	-7.0/02
June	20.1	22.6	10.5	9.5	15.3	16.0	32.0/22	6.8/25
July	25.3	24.8	12.4	11.5	18.9	18.2	32.8/31	5.8/28
August	22.5	24.6	10.2	10.4	16.4	17.5	31.6/01	5.0/13
September	18.8	18.1	6.4	4.9	12.6	11.6	30.8/03	-2.2/28
October	12.1	10.8	0.3	-1.3	6.2	4.8	18.6/15	-6.9/22
November	2.1	-1.4	-5.5	-10.3	-1.7	-5.9	12.7/10	-21.0/16
December	-4.4	-9.0	-11.6	-18.6	-8.0	-13.9	7.4/09	-25.8/17
Average	9.1	8.3	-1.6	-3.4	3.8	2.5		

Monthly Precipitation and Extreme Values for 2005
and Total Annual Precipitation (1964-2005)

MONTH	PRECIPITATION (mm)			CUMULATIVE PRECIPITATION $(\mathbf{m m})$			EXTREME DAILY PRECIPITATION (mm)
	$\mathbf{2 0 0 5}$	Normal	\% of Normal	$\mathbf{2 0 0 5}$	Normal	\% of Normal	Maximum/Date
January	16.0	18.2	87.9	16.0	18.2	87.9	$3.2 / 01$
February	16.4	13.3	123.3	32.4	31.5	102.9	$7.7 / 04$
March	19.9	16.2	122.8	52.3	47.7	109.6	$8.5 / 06$
April	12.8	23.6	54.2	65.1	71.3	91.3	$4.4 / 15$
May	29.4	44.3	66.4	94.5	115.6	81.7	$11.8 / 18$
June	171.0	59.5	287.4	265.5	175.1	151.6	$58.8 / 29$
July	44.4	58.0	76.6	309.9	233.1	132.9	$9.6 / 01$
August	54.0	36.2	149.2	363.9	269.3	135.1	$14.0 / 25$
September	81.6	29.4	277.6	445.5	298.7	149.1	$35.6 / 10$
October	10.2	16.4	62.2	455.7	315.1	144.6	$3.5 / 02$
November	17.6	14.8	118.9	473.3	329.9	143.5	$11.3 / 02$
December	13.5	18.3	73.8	486.8	348.2	139.8	$2.3 / 13$
Total	486.8	348.2	139.8				

Monthly Heating and Cooling Degree-days, 2005

MONTH	HEATING DEGREE-DAYS Base $18^{\circ} \mathrm{C}$		CUMULATIVE HEATING DEGREE-DAYS		COOLING DEGREE-DAYS Base $18^{\circ} \mathrm{C}$		CUMULATIVE COOLING DEGREE-DAYS	
	2005	Normal	2005	Normal	2005	Normal	2005	Normal
January	1078.4	1076.9	1078.4	1076.9	0.0	0.0	0.0	0.0
February	797.1	886.2	1875.5	1963.1	0.0	0.0	0.0	0.0
March	703.9	732.4	2579.4	2695.5	0.0	0.0	0.0	0.0
April	339.6	420.7	2919.0	3116.2	0.0	0.3	0.0	0.3
May	223.7	204.4	3142.7	3320.6	0.0	7.4	0.0	7.7
June	91.9	82.8	3234.6	3403.4	10.4	22.3	10.4	30.0
July	32.1	35.3	3266.7	3438.7	58.5	40.7	68.9	70.7
August	78.5	57.7	3345.2	3496.4	27.7	42.5	100.0	113.2
September	164.7	198.9	3509.9	3695.3	3.4	5.8	100.0	119.0
October	364.8	410.2	3874.7	4105.5	0.0	0.1	100.0	119.1
November	592.2	715.8	4466.9	4821.3	0.0	0.0	100.0	119.1
December	806.7	987.7	5273.6	5809.0	0.0	0.0	100.0	119.1
Total	5273.6	5809.1			100.0	119.1		

Monthly Growing Degree-days, 2005

MONTH	GROWING DEGREE-DAYS Base $\mathbf{5}^{\circ} \mathbf{C}$		CUMULATIVE GROWING DD Base $\mathbf{5}^{\circ} \mathbf{C}$		FROST-FREE GDD Base $5^{\circ} \mathbf{C}$	
	$\mathbf{2 0 0 5}$		Normal	$\mathbf{2 0 0 5}$	Normal	$\mathbf{2 0 0 5}$
January	0.0	0.0	0.0	0.0	0.0	0.0
February	0.0	0.0	0.0	0.0	0.0	0.0
March	0.0	2.4	0.0	2.4	0.0	0.0
April	82.2	61.3	82.2	63.7	0.0	0.0
May	189.9	211.6	272.1	275.3	142.6	67.7
June	308.5	331.5	580.6	606.8	308.5	335.2
July	429.4	408.4	1010.0	1015.2	429.4	741.2
August	352.2	387.8	1362.2	1403.0	352.2	1053.0
September	228.7	203.5	1590.9	1606.5	211.3	1257.0
October	66.9	63.7	1657.8	1670.2	0.0	1257.0
November	4.0	2.6	1661.8	1672.8	0.0	1257.0
December	0.0	0.1	1661.8	1672.9	0.0	1257.0
Total	1661.8	1672.9			1444.0	

2005 Growing Degree-days (Base $\left.5^{\circ} \mathrm{C}\right)$	Normal Growing Degree-days (Base $\left.5^{\circ} \mathrm{C}\right)$
2005 Frost-free Growing Degree-days (Base $\left.5^{\circ} \mathrm{C}\right)$	Normal Cumulative Growing Degree-days (Base $\left.5^{\circ} \mathrm{C}\right)$
2005 Cumulative Frost-free Growing Degree-days (Base $\left.5^{\circ} \mathrm{C}\right)$	2005 Cumulative Growing Degree-days (Base $\left.5^{\circ} \mathrm{C}\right)$

Potential Evaporation (PET) using the Thornthwaite Method, 2005

MONTH	AVERAGE TEMP ${ }^{\circ} \mathrm{C}$	PET (mm)	PET 1971-2000 Normal (mm)
Jan	-16.8	0.0	0.0
Feb	-10.5	0.0	0.0
Mar	-4.7	0.0	0.0
Apr	6.7	44.7	28.6
May	10.8	79.7	81.5
June	15.3	111.6	113.2
July	18.9	136.1	128.9
Aug	16.4	109.2	113.3
Sept	12.6	73.0	64.9
Oct	6.2	33.4	24.3
Nov	-1.7	0.0	0.0
Dec	-8.0	0.0	0.0

Sunrise and Sunset at Saskatoon, 2005 and 2006
(local time in hours and minutes)

2005	JANUARY		FEBRUARY		MARCH		APRIL		MAY		JUNE		JULY		AUGUST		SEPTEMBER		OCTOBER		NOVEMBER		DECEMBER	
Date	Rise	Set																						
1	9:15	17:06	8:46	17:55	7:52	18:47	6:40	19:41	5:36	20:32	4:52	21:18	4:50	21:30	5:28	20:56	6:18	19:53	7:08	18:43	8:02	17:37	8:53	16:5\}
2	9:15	17:07	8:45	17:57	7:49	18:49	6:38	19:43	5:34	20:34	4:51	21:19	4:51	21:30	5:30	20:55	6:20	19:51	7:10	18:41	8:04	17:35	8:55	16:5:
3	9:15	17:08	8:43	17:58	7:47	18:50	6:36	19:45	5:32	20:36	4:50	21:20	4:52	21:29	5:31	20:53	6:22	19:49	7:11	18:39	8:06	17:34	8:56	16:5:
4	9:15	17:09	8:41	18:00	7:45	18:52	6:34	19:46	5:30	20:38	4:49	21:21	4:53	21:29	5:33	20:51	6:23	19:46	7:13	18:36	8:08	17:32	8:57	16:5¢
5	9:14	17:10	8:40	18:02	7:43	18:54	6:31	19:48	5:28	20:39	4:49	21:22	4:54	21:28	5:34	20:49	6:25	19:44	7:15	18:34	8:10	17:30	8:59	16:5t
6	9:14	17:12	8:38	18:04	7:41	18:56	6:29	19:50	5:27	20:41	4:48	21:23	4:55	21:28	5:36	20:48	6:27	19:42	7:16	18:32	8:11	17:28	9:00	16:5!
7	9:13	17:13	8:36	18:06	7:38	18:58	6:27	19:51	5:25	20:42	4:48	21:24	4:55	21:27	5:38	20:46	6:28	19:39	7:18	18:30	8:13	17:27	9:01	16:5!
8	9:13	17:14	8:34	18:08	7:36	18:59	6:24	19:53	5:23	20:44	4:47	21:25	4:56	21:26	5:39	20:44	6:30	19:37	7:20	18:27	8:15	17:25	9:02	16:5!
9	9:12	17:16	8:33	18:10	7:34	19:01	6:22	19:55	5:21	20:46	4:47	21:25	4:57	21:26	5:41	20:42	6:32	19:35	7:22	18:25	8:17	17:23	9:03	16:5!
10	9:12	17:17	8:31	18:12	7:31	19:03	6:20	19:57	5:20	20:47	4:46	21:26	4:58	21:25	5:42	20:40	6:33	19:33	7:23	18:23	8:19	17:22	9:04	16:5
11	9:11	17:19	8:29	18:13	7:29	19:05	6:18	19:58	5:18	20:49	4:46	21:27	5:00	21:24	5:44	20:38	6:35	19:30	7:25	18:21	8:20	17:20	9:06	16:5
12	9:10	17:20	8:27	18:15	7:27	19:06	6:15	20:00	5:16	20:50	4:46	21:27	5:01	21:23	5:46	20:36	6:36	19:28	7:27	18:18	8:22	17:19	9:07	16:5
13	9:10	17:22	8:25	18:17	7:25	19:08	6:13	20:02	5:15	20:52	4:46	21:28	5:02	21:22	5:47	20:34	6:38	19:25	7:28	18:16	8:24	17:17	9:07	16:5
14	9:09	17:23	8:23	18:19	7:22	19:10	6:11	20:04	5:13	20:54	4:45	21:29	5:03	21:21	5:49	20:32	6:40	19:23	7:30	18:14	8:26	17:16	9:08	16:5
15	9:08	17:25	8:21	18:21	7:20	19:12	6:09	20:05	5:12	20:55	4:45	21:29	5:04	21:20	5:51	20:30	6:41	19:21	7:32	18:12	8:27	17:14	9:09	16:5
16	9:07	17:26	8:19	18:23	7:18	19:13	6:07	20:07	5:10	20:57	4:45	21:30	5:05	21:19	5:52	20:28	6:43	19:18	7:34	18:10	8:29	17:13	9:10	16:5!
17	9:06	17:28	8:17	18:25	7:15	19:15	6:05	20:09	5:09	20:58	4:45	21:30	5:07	21:18	5:54	20:26	6:45	19:16	7:35	18:07	8:31	17:12	9:11	16:5!
18	9:05	17:30	8:15	18:27	7:13	19:17	6:02	20:10	5:07	21:00	4:45	21:30	5:08	21:17	5:55	20:24	6:46	19:14	7:37	18:05	8:33	17:10	9:11	16:5!
19	9:04	17:31	8:13	18:28	7:11	19:19	6:00	20:12	5:06	21:01	4:45	21:31	5:09	21:16	5:57	20:22	6:48	19:11	7:39	18:03	8:34	17:09	9:12	16:5¢
20	9:03	17:33	8:11	18:30	7:08	19:20	5:58	20:14	5:05	21:03	4:45	21:31	5:11	21:14	5:59	20:20	6:50	19:09	7:41	18:01	8:36	17:08	9:13	16:5t
21	9:02	17:35	8:09	18:32	7:06	19:22	5:56	20:16	5:03	21:04	4:46	21:31	5:12	21:13	6:00	20:18	6:51	19:07	7:43	17:59	8:38	17:07	9:13	16:5¢
22	9:00	17:36	8:07	18:34	7:04	19:24	5:54	20:17	5:02	21:05	4:46	21:31	5:13	21:12	6:02	20:15	6:53	19:04	7:44	17:57	8:39	17:06	9:14	16:5;
23	8:59	17:37	8:05	18:36	7:01	19:26	5:52	20:19	5:01	21:07	4:46	21:31	5:15	21:10	6:04	20:13	6:55	19:02	7:46	17:55	8:41	17:05	9:14	16:5\}
24	8:58	17:40	8:03	18:38	6:59	19:27	5:50	20:21	5:00	21:08	4:47	21:31	5:16	21:09	6:05	20:11	6:56	19:00	7:48	17:53	8:43	17:04	9:14	16:5\}
25	8:57	17:42	8:00	18:39	6:57	19:29	5:48	20:22	4:58	21:09	4:47	21:31	5:18	21:07	6:07	20:09	6:58	18:57	7:50	17:51	8:44	17:03	9:15	16:5!
26	8:55	17:44	7:58	18:41	6:54	19:31	5:46	20:24	4:57	21:11	4:47	21:31	5:19	21:06	6:09	20:07	7:00	18:55	7:51	17:49	8:46	17:02	9:15	17:0
27	8:54	17:45	7:56	18:43	6:52	19:33	5:44	20:26	4:56	21:12	4:48	21:31	5:21	21:04	6:10	20:05	7:01	18:53	7:53	17:47	8:47	17:01	9:15	17:0
28	8:52	17:47	7:54	18:45	6:50	19:34	5:42	20:27	4:55	21:13	4:48	21:31	5:22	21:03	6:12	20:02	7:03	18:50	7:55	17:45	8:49	17:00	9:15	17:0
29	8:51	17:49			6:48	19:36	5:40	20:29	4:54	21:15	4:49	21:31	5:24	21:01	6:14	20:00	7:05	18:48	7:57	17:43	8:50	16:59	9:15	17:0́
30	8:49	17:51			6:45	19:38	5:38	20:31	4:53	21:16	4:50	21:31	5:25	21:00	6:15	19:58	7:06	18:46	7:59	17:41	8:52	16:59	9:15	17:0:
31	8:48	17:53			6:43	19:39			4:52	21:17			5:27	20:58	6:17	19:56			8:01	17:39			9:15	17:0

Source: National Research Council, Canada, Hertzberg Institute of Astrophysics
Sunrise/set = corresponds to the upper limb of the sun appearing at the horizon

2006	JANUARY		FEBRUARY		MARCH		APRIL		MAY		JUNE		JULY		AUGUST		SEPTEMBER		OCTOBER		NOVEMBER		DECEMBER	
Date	Rise	Set																						
1	9:15	17:05	8:47	17:54	7:52	18:46	6:41	19:41	5:36	20:32	4:52	21:18	4:50	21:30	5:28	20:57	6:18	19:54	7:07	18:44	8:02	17:38	8:53	16:5!
2	9:15	17:06	8:45	17:56	7:50	18:48	6:39	19:42	5:34	20:34	4:51	21:19	4:51	21:30	5:29	20:55	6:20	19:52	7:09	18:42	8:04	17:36	8:54	16:5;
3	9:15	17:08	8:43	17:58	7:48	18:50	6:36	19:44	5:32	20:35	4:50	21:20	4:52	21:29	5:31	20:53	6:21	19:49	7:11	18:39	8:06	17:34	8:56	16:5;
4	9:15	17:09	8:42	18:00	7:46	18:52	6:34	19:46	5:31	20:37	4:50	21:21	4:53	21:29	5:33	20:52	6:23	19:47	7:13	18:37	8:07	17:32	8:57	16:5t
5	9:14	17:10	8:40	18:02	7:43	18:54	6:32	19:48	5:29	20:39	4:49	21:22	4:53	21:28	5:34	20:50	6:25	19:45	7:14	18:35	8:09	17:31	8:58	16:5t
6	9:14	17:11	8:38	18:04	7:41	18:55	6:30	19:49	5:27	20:40	4:48	21:23	4:54	21:28	5:36	20:48	6:26	19:42	7:16	18:32	8:11	17:29	9:00	16:5t
7	9:14	17:13	8:37	18:05	7:39	18:57	6:27	19:51	5:25	20:42	4:48	21:24	4:55	21:27	5:37	20:46	6:28	19:40	7:18	18:30	8:13	17:27	9:01	16:5!
8	9:13	17:14	8:35	18:07	7:37	18:59	6:25	19:53	5:23	20:44	4:47	21:24	4:56	21:27	5:39	20:44	6:29	19:38	7:19	18:28	8:15	17:25	9:02	16:5!
9	9:12	17:15	8:33	18:09	7:34	19:01	6:23	19:55	5:22	20:45	4:47	21:25	4:57	21:26	5:40	20:42	6:31	19:35	7:21	18:26	8:16	17:24	9:03	16:5!
10	9:12	17:17	8:31	18:11	7:32	19:02	6:21	19:56	5:20	20:47	4:46	21:26	4:58	21:25	5:42	20:41	6:33	19:33	7:23	18:23	8:18	17:22	9:04	16:5
11	9:11	17:18	8:29	18:13	7:30	19:04	6:18	19:58	5:18	20:49	4:46	21:27	4:59	21:24	5:44	20:39	6:34	19:31	7:25	18:21	8:20	17:21	9:05	16:5
12	9:11	17:20	8:27	18:15	7:27	19:06	6:16	20:00	5:17	20:50	4:46	21:27	5:00	21:23	5:45	20:37	6:36	19:28	7:26	18:19	8:22	17:19	9:06	16:5،
13	9:10	17:21	8:25	18:17	7:25	19:08	6:14	20:01	5:15	20:52	4:46	21:28	5:02	21:22	5:47	20:35	6:38	19:26	7:28	18:17	8:24	17:18	9:07	16:5،
14	9:09	17:23	8:24	18:19	7:23	19:10	6:12	20:03	5:14	20:53	4:45	21:29	5:03	21:21	5:49	20:33	6:39	19:24	7:30	18:14	8:25	17:16	9:08	16:5
15	9:08	17:24	8:22	18:21	7:21	19:11	6:09	20:05	5:12	20:55	4:45	21:29	5:04	21:20	5:50	20:31	6:41	19:21	7:32	18:12	8:27	17:15	9:09	16:5
16	9:07	17:26	8:20	18:22	7:18	19:13	6:07	20:07	5:11	20:56	4:45	21:30	5:05	21:19	5:52	20:29	6:43	19:19	7:33	18:10	8:29	17:13	9:10	16:5!
17	9:06	17:28	8:18	18:24	7:16	19:15	6:05	20:08	5:09	20:58	4:45	21:30	5:06	21:18	5:53	20:27	6:44	19:17	7:35	18:08	8:31	17:12	9:11	16:5!
18	9:05	17:29	8:16	18:26	7:14	19:17	6:03	20:10	5:08	20:59	4:45	21:30	5:08	21:17	5:55	20:24	6:46	19:14	7:37	18:06	8:32	17:11	9:11	16:5!
19	9:04	17:31	8:14	18:28	7:11	19:18	6:01	20:12	5:06	21:01	4:45	21:31	5:09	21:16	5:57	20:22	6:48	19:12	7:39	18:04	8:34	17:10	9:12	16:5!
20	9:03	17:33	8:11	18:30	7:09	19:20	5:59	20:13	5:05	21:02	4:45	21:31	5:10	21:15	5:58	20:20	6:49	19:10	7:40	18:02	8:36	17:08	9:13	16:5t
21	9:02	17:34	8:09	18:32	7:07	19:22	5:56	20:15	5:04	21:04	4:46	21:31	5:12	21:13	6:00	20:18	6:51	19:07	7:42	17:59	8:37	17:07	9:13	16:5t
22	9:01	17:36	8:07	18:34	7:04	19:23	5:54	20:17	5:02	21:05	4:46	21:31	5:13	21:12	6:02	20:16	6:52	19:05	7:44	17:57	8:39	17:06	9:14	16:5:
23	8:59	17:38	8:05	18:35	7:02	19:25	5:52	20:19	5:01	21:06	4:46	21:31	5:14	21:11	6:03	20:14	6:54	19:03	7:46	17:55	8:41	17:05	9:14	16:5;
24	8:58	17:40	8:03	18:37	7:00	19:27	5:50	20:20	5:00	21:08	4:47	21:31	5:16	21:09	6:05	20:12	6:56	19:00	7:47	17:53	8:42	17:04	9:14	16:5\}
25	8:57	17:41	8:01	18:39	6:57	19:29	5:48	20:22	4:59	21:09	4:47	21:31	5:17	21:08	6:07	20:09	6:57	18:58	7:49	17:51	8:44	17:03	9:15	16:5!
26	8:56	17:43	7:59	18:41	6:55	19:30	5:46	20:24	4:58	21:10	4:47	21:31	5:19	21:06	6:08	20:07	6:59	18:56	7:51	17:49	8:45	17:02	9:15	17:0
27	8:54	17:45	7:57	18:43	6:53	19:32	5:44	20:25	4:56	21:12	4:48	21:31	5:20	21:05	6:10	20:05	7:01	18:53	7:53	17:47	8:47	17:01	9:15	17:0
28	8:53	17:47	7:54	18:45	6:50	19:34	5:42	20:27	4:55	21:13	4:48	21:31	5:22	21:03	6:11	20:03	7:02	18:51	7:55	17:45	8:49	17:00	9:15	17:0
29	8:51	17:49			6:48	19:36	5:40	20:29	4:54	21:14	4:49	21:31	5:23	21:02	6:13	20:01	7:04	18:49	7:56	17:43	8:50	17:00	9:15	17:0،
30	8:50	17:51			6:46	19:37	5:38	20:30	4:54	21:15	4:50	21:31	5:25	21:00	6:15	19:58	7:06	18:46	7:58	17:41	8:51	16:59	9:15	17:0:
31	8:48	17:52			6:43	19:39			4:53	21:17			5:26	20:58	6:16	19:56			8:00	17:40			9:15	17:0

Source: National Research Council, Canada, Hertzberg Institute of Astrophysics
Sunrise/set = corresponds to the upper limb of the sun appearing at the horizon

Campbell-Stokes Bright Sunshine Recorder
Used at CRS from 1965-1992
photo credit: CR Beaulieu, 1993

CR Beaulieu with the old and new Bright
Sunshine Recorders, 2003
photo credit: SRC Corporate Relations

Kipp \& Zonen Auto Bright Sunshine Recorder
Used at CRS from 2001 to present
phot credit: CR Beaulieu, 2000

Bright Sunshine for 2005 and Annual Trend

MONTH	BRIGHT SUNSHINE (hours)					CUMULATIVE BRIGHT SUNSHINE (hours)		NUMBER OF BRIGHT SUNSHINE DAYS	
	2005	Normal	\% of Normal	Possible*	\% of Possible	2005	\% of Normal	2005	NORMAL
January	95.7	103.3	92.6	259.6	36.9	95.7	103.3	24	23.8
February	143.9	132.3	108.8	279.4	51.5	239.6	235.6	26	24.2
March	168.7	175.2	96.3	369.8	45.6	408.3	410.8	25	27.1
April	243.3	225.2	108.0	418.9	58.1	651.6	636.0	29	27.3
May	257.6	267.1	96.4	488.3	52.8	909.2	903.1	30	29.5
June	175.3	277.2	63.2	500.2	35.0	1084.5	1180.3	25	28.5
July	306.0	305.7	100.1	501.5	61.0	1390.5	1486.0	31	30.3
August	223.3	280.8	79.5	452.1	49.4	1613.8	1766.8	28	30.1
September	207.4	186.0	111.5	378.7	54.8	1821.2	1952.8	29	27.0
October	208.0	157.9	131.7	328.7	63.3	2029.2	2110.7	29	27.0
November	90.3	98.0	92.1	263.7	34.2	2119.5	2208.7	23	22.2
December**	M	85.4	M	242.3	M	M	2294.1	M	22.8
Total		2294.1		4483.2					319.8

*Possible bright sunshine hours calculated from Nat. Res. Council of Canada, Hertzberg Institute of Astrophysics sunrise/set table for 2005
**Bright sunshine recorder in for scheduled re-calibration check

Possible Bright Sunshine (hours)* ${ }^{*} 2005$ Cumulative Bright Sunshine (hours)

- -Normal Cumulative Bright Sunshine (hours)

Global and Diffuse Solar Radiation, 2005
($\mathrm{MJ} / \mathrm{m}^{2}$)

DATE	AN		FEB		MAR		APR		MAY		JuN		JULY		AUG		SEPT		OCT		Nov		DEC	
	G	D	G	D	G	D	G	D	G	D	G	D	G	D	G	D	G	D	G	D	G	D	G	D
	1.9	1.9	5.6	3.1	1.9	4.1	14.7	8.2	0.0	0.0	9.0	6.4	22.5	9.1	18.0	8.0	17.0	6.9	1.6	1.6	6.5	2.5	2.8	2.2
	3.4	2.6	5.0	3.3	11.5	3.3	19.6	2.6	1.4	0.3	13.6	9.5	5.7	7.7	25.3	5.7	19.7	3.5	6.6	5.9	6.6	2.1	2.4	2.4
	2.9	2.7	4.9	4.1	11.9	5.3	19.8	3.9	26.0	3.3	12.8	10.3	10.5	8.0	25.9	4.4	17.7	4.6	11.4	4.3	4.5	3.1	2.5	2.4
	4.4	1.4	2.5	2.5	13.4	3.3	4.9	4.5	23.9	4.9	9.6	8.7	27.3	7.6	25.6	3.7	18.2	3.7	13.0	3.3	1.7	1.6	5.5	1.5
	5.1	1.3	3.5	3.5	11.7	4.7	14.9	7.3	26.	3.7	10.4	9.5	28.8	5.3	22.7	6.1	5.5	4.2	13.7	1.9	1.9	1.8	1.8	1.8
	2.5	2.4	5.7	5.1	5.6	5.5	18.4	5.7	12.0	8.7	13.0	10.7	25.0	8.9	24.1	4.8	17.7	2.9	11.6	2.6	8.0	2.0	5.7	1.3
	2.2	2.2	7.1	2.3	7.1	6.5	19.	4.5	18.8	7.4	3.9	3.3	28.3	6.3	24.0	4.6	18.3	2.3	6.7	5.1	5.0	2.5	5.7	1.3
8	2.0	2.0	7.8	3.9	7.3	6.7	19.	4.7	20.5	8.2	6.8	6.2	29.3	3.9	15.7	8.9	16.7	4.7	12.0	2.1	1.5	1.5	2.4	2.0
	5.7	3.5	7.5	1.6	11.	4.4	13.8	7.8	24.3	6.4	23.4	12.6	25.7	5.8	23.9	4.5	14.9	6.0	11.1	2.8	4.5	2.2	2.4	1.6
10	3.6	2.2	7.1	3.6	11.	5.1	2.3	2.0	28.5	2.8	22.7	7.3	25.0	7.9	19.8	10.1	1.7	1.5	12.2	1.7	4.2	3.1	3.0	1.3
11	4.0	2.2	7.6	3.8	5.7	5.5	23.0	2.4	8.5	3.9	28.5	4.2	26	4.2	11.2	7.3	7.6	6.5	10.	2.3	5.1	2.8	3.9	0.9
12	3.9	2.8	6.4	5.3	10	8.8	5.5	5.3	27	6.9	18.6	8.1	28.6	3.2	13.9	9.1	15.6	4.7	11.0	2.5	4.6	2.2	2.6	1.9
13	7.0	2.1	5.6	5.3	15	4.8	20	5.0	14.9	10.7	24.9	9.9	24.0	8.4	17.7	9.3	11.7	6.7	9.4	2.9	6.5	1.5	1.1	1.2
14	6.1	1.9	8.5	3.1	10.4	7.8	8.6	6.7	29.1	2.8	25	6.3	29.2	3.4	17.7	9.0	7.0	6.4	11.3	1.6	2.5	2.4	1.3	1.1
15	6.0	1.4	7.6	3.0	17.1	3.7	22	3.2	24.8	8.1	9.8	7.6	21.	9.8	12.4	10.	6.3	5.9	10.	3.2	6.1	1.3	3.6	1.2
16	6.0	1.7	8.7	3.0	10.7	8.7	20.	7.6	24.5	8.2	27.6	6.3	14.5	10.2	3.2	3.0	5.6	5.1	3.3	3.2	1.9	1.9	3.2	1.4
17	3.9	2.8	6.9	5.5	11.5	8.0	15.	9.1	6.3	5.4	11.1	9.1	14.7	8.1	3.0	2.6	10.8	6.5	7.3	2.5	3.8	2.6	5.1	1.2
18	3.0	2.3	11.1	2.6	12.2	10.2	20	7.2	5.7	5.1	13.1	7.7	24.9	5.0	20.5	5.8	16.3	2.3	9.1	1.7	1.6	1.6	5.6	1.7
19	2.2	2.2	7.8	5.7	17.4	6.3	23.9	2.6	20.2	8.3	17.8	9.7	22.6	8.5	19.2	6.5	15.8	3.2	9.4	2.6	4.7	2.0	3.4	1.2
20	2.8	2.8	11.	3.1	10.	9.6	23.2	2.5	26	5.6	29.8	3.6	21	5.3	19	5.7	14.3	3.4	4.4	2.9	5.2	1.2	3.2	1.2
21	5.7	5.0	8.1	5.5	7.1	6.9	24.4	2.5	5.2	4.4	29.	3.0	28.2	4.6	22	2.5	16	2.2	9.8	2.0	1.8	1.6	2.8	2.1
22	2.9	2.8	9.5	4.2	6.5	6.0	24.8	2.5	24.4	8.9	29.9	3.6	19.4	9.1	22.1	2.5	14.2	2.9	11.	1.5	4.2	2.2	2.4	1.9
23	4.1	3.2	9.8	4.1	15.0	8.3	23.7	4.1	22.1	6.8	16.0	11.	24.4	6.6	1.9	1.7	8.8	4.8	9.6	1.5	1.7	1.7	3.2	1.4
24	3.9	3.4	11.	2.6	19.9	4.2	24.8	2.6	15	10.6	23.6	12.1	21.7	9.5	7.0	4.7	14.3	4.0	8.8	1.5	2.5	2.5	3.0	1.0
25	2.6	2.6	13.2	3.1	20.1	3.1	23.6	5.1	7.8	7.1	16.0	9.6	22.4	8.3	8.6	7.1	12.4	4.7	9.1	1.5	3.8	1.8	2.3	2.2
26	3.1	3.1	11.	1.8	18.	5.6	17.8	8.2	10.2	7.8	10.1	7.2	18	8.5	9.6	6.9	11.6	5.2	7.3	2.6	4.6	1.5	3.2	1.0
27	6.0	4.0	6.9	6.2	16.8	6.8	11.7	8.9	24.6	8.1	27.9	6.0	12.3	7.8	20.8	2.7	9.6	4.6	4.4	3.4	1.1	1.	2.9	1.9
28	2.4	2.4	11.2	3.2	14.1	9.5	13.3	10.0	13.3	11.0	11.0	8.7	11.3	8.3	21.2	2.4	13.2	2.8	2.5	2.5	0.8	0.8	0.6	0.6
29	6.4	1.7			4.6	4.3	0.5	0.4	22.6	9.7	5.3	4.8	23.9	6.7	19.1	4.5	9.2	5.0	7.3	1.6	1.1	1.2	0.8	0.9
30	3.7	3.1			19.5	2.8			27.3	5.8	23.5	8.5	26.3	3.2	6.9	5.8	12.7	4.	3.2	2.6	2.3	2.3	0.8	0.8
31	4.6	4.1			20.2	2.2			22.6	8.7			24.5	6.9	12.9	8.9			6.0	3.4			0.6	0.6
TOTAL	124.0	79.8	219.5	104.1	387.	182.0	495.3	147.1	585.5	199.6	525.0	231.6	708.6	216	516.5	178.9	380.4	131.6	265.0	80.8	110.3	58.6	89.8	45.2
	$\begin{aligned} & \text { MENT } \\ & \text { 27: } 12 \\ & \text { y a liitle } \\ & \text { Diffus } \\ & \text { ber } 13,2 \end{aligned}$	TS: 1200hrs tle high se repla 28-31	$G=G$ Diffu for the aced, Instrum	Global use ring diffuse Global ments	Radia was fou but the replace covered	iation found to e previ ed on M ed by ho		= Diffu slipped days shou 15 Glob st - read	se Ra probab uld be o al and dings pr	Radiatio ably on okay as d Diffuse probably	the 25 th they new low	Units 5th. Skie were m calibrat	; MJ es had ostly o ion nu	$\mathrm{J} / \mathrm{m} 2$ been overcast mbers	loudly installe	up unti ed April	the m 29.	morning April 31-M	of the May 4	27th. data lo	easur gger pr	rement problem	for the	$27 \text { are }$

Monthly Average Soil Temperatures, 2005
(10 to 300 cm depths)

MONTH	Mean Air Temp @ 0900h (${ }^{\circ} \mathrm{C}$)	SOIL TEMPERATURES (${ }^{\circ}$) @ 0900hrs												SOIL TEMPERATURES @ 1600hrs			
		10 cm		20 cm		50 cm		100 cm		150 cm		300 cm		10 cm		20 cm	
		2005	NORM														
January	-18.0	-8.6	-8.3	-6.9	-7.6	-5.2	-3.8	-1.0	-0.2	1.4	1.8	4.5	4.5	-8.5	-8.1	-6.9	-6.8
February	-13.6	-4.6	-7.3	-3.5	-6.8	-3.5	-4.1	-1.4	-1.0	0.4	0.8	3.0	3.3	-4.7	-7.1	-3.5	-5.9
March	-6.6	-2.3	-3.1	-1.6	-2.8	-2.1	-1.8	-0.9	-0.6	0.4	0.4	2.4	2.5	-2.3	-2.7	-1.6	-2.2
April	5.9	3.1	3.2	4.3	3.5	2.1	2.5	1.4	1.2	1.4	1.2	2.2	2.2	5.4	5.4	4.4	4.2
May	10.0	8.0	10.6	9.1	10.9	7.1	8.9	5.9	5.9	4.8	4.4	3.4	3.1	10.7	13.8	9.4	11.8
June	14.7	12.5	15.7	13.6	16.2	11.6	14.0	9.7	10.4	8.0	8.2	5.2	5.2	14.7	19.2	13.9	17.1
July	18.5	15.4	18.0	16.8	18.8	15.4	16.8	13.4	13.2	11.4	11.1	7.6	7.5	18.3	21.5	17.2	19.5
August	14.6	13.3	16.8	15.1	17.9	14.5	16.8	13.5	14.1	12.4	12.4	9.6	9.1	15.5	20.2	15.2	18.6
September	10.0	9.5	11.2	11.5	12.5	12.1	13.3	12.1	12.5	11.8	11.9	10.1	9.9	11.4	13.6	11.6	13.1
October	3.0	4.3	4.5	6.3	6.0	7.5	8.0	8.9	9.2	9.5	9.7	9.6	9.5	5.5	6.2	6.3	6.6
November	-3.2	0.1	-1.7	1.7	-0.5	3.3	2.8	5.7	5.4	6.9	6.8	8.2	8.1	0.2	-1.1	1.7	0.2
December	-9.4	-2.5	-6.5	-0.7	-5.5	0.1	-1.6	2.8	1.9	4.3	3.9	6.3	6.3	-2.4	-6.3	-0.7	-4.8

Monthly Average Wind Speed and Extreme Gusts, 2005

MONTH	AVERAGE WIND SPEED (km/h)			EXTREME GUST (km/h)	
	2005 Average	Normal*	2005 Average Wind Gust	2005 Wind Gust for CRS (Speed/direction/date)	Extreme Wind Gust since 1953 (Saskatoon Airport Station) (Speed/direction/date)
January	13.4	16.0	32.2	$59.7^{\text {N } 21 ~}$	$111.0^{\text {w/ } 1986 / 11 ~}$
February	11.9	16.0	28.4	$43.6{ }^{\text {NNE }} 03$	$106.0^{\text {N1 } 1988 / 22 ~}$
March	15.8	17.0	34.2	$62.3{ }^{\mathrm{NW}} 09$	93.0w1959/18
April	18.2	18.0	42.2	$87.1^{\text {wsw }} 15$	108.0 ${ }^{\text {w } 1959 / 06 ~}$
May	18.1	18.0	42.9	$70.0^{\text {sw }} 18$	$132.0^{\text {sw }} 1965 / 17$
June	15.5	17.0	42.5	$109.7^{\text {sw }} 22$	117.0 ${ }^{\text {s } 1986 / 01 ~}$
July	13.2	16.0	39.3	$69.8{ }^{\text {WNw}} 23$	113.0 ${ }^{\text {E } 1955 / 05 ~}$
August	14.1	16.0	38.7	$76.4{ }^{\text {wsw }} 01$	151.0 ${ }^{\text {w/ } 1967 / 14 ~}$
September	14.1	17.0	36.5	$66.9{ }^{\text {NNE }} 10$	148.0 ${ }^{\text {w/ } 1967 / 22 ~}$
October	13.9	17.0	34.5	$63.9{ }^{\text {SE }} 15$	$138.0^{\text {NW } 1967 / 16 ~}$
November	14.0	16.0	32.2	$46.9^{\mathrm{N} 14}$	100.0 ${ }^{\text {w }} 1976 / 17$
December	12.3	16.0	28.2	$55.8{ }^{\text {NW }} 09$	$121.0^{\text {w }} 1955 / 12$

*1961-90 Normals used are from the Environment Canada, Saskatoon Airport station

Δ Extreme Wind Gust (km/h), since 1953, Saskatoon Airport Station
Windchill Calculation Chart ${ }^{1}$
(revised 2001)

\mathbf{V}	$\mathbf{5}$	$\mathbf{0}$	$\mathbf{- 5}$	$\mathbf{- 1 0}$	$\mathbf{- 1 5}$	$\mathbf{- 2 0}$	$\mathbf{- 2 5}$	$\mathbf{- 3 0}$	$\mathbf{- 3 5}$	$\mathbf{- 4 0}$	$\mathbf{- 4 5}$	$\mathbf{- 5 0}$
$\mathbf{5}$	4	-2	-7	-13	-19	-24	-30	-36	-41	-47	-53	-58
$\mathbf{1 0}$	3	-3	-9	-15	-21	-27	-33	-39	-45	-51	-57	-63
$\mathbf{1 5}$	2	-4	-11	-17	-23	-29	-35	-41	-48	-54	-60	-66
$\mathbf{2 0}$	1	-5	-12	-18	-24	-31	-37	-43	-49	-56	-62	-68
$\mathbf{2 5}$	1	-6	-12	-19	-25	-32	-38	-45	-51	-57	-64	-70
$\mathbf{3 0}$	0	-7	-13	-20	-26	-33	-39	-46	-52	-59	-65	-72
$\mathbf{3 5}$	0	-7	-14	-20	-27	-33	-40	-47	-53	-60	-66	-73
$\mathbf{4 0}$	-1	-7	-14	-21	-27	-34	-41	-48	-54	-61	-68	-74
$\mathbf{4 5}$	-1	-8	-15	-21	-28	-35	-42	-48	-55	-62	-69	-75
$\mathbf{5 0}$	-1	-8	-15	-22	-29	-35	-42	-49	-56	-63	-70	-76
$\mathbf{5 5}$	-2	-9	-15	-22	-29	-36	-43	-50	-57	-63	-70	-77
$\mathbf{6 0}$	-2	-9	-16	-23	-30	-37	-43	-50	-57	-64	-71	-78
$\mathbf{6 5}$	-2	-9	-16	-23	-30	-37	-44	-51	-58	-65	-72	-79
$\mathbf{7 0}$	-2	-9	-16	-23	-30	-37	-44	-51	-59	-66	-73	-80
$\mathbf{7 5}$	-3	-10	-17	-24	-31	-38	-45	-52	-59	-66	$\mathbf{- 7 3}$	-80
$\mathbf{8 0}$	-3	-10	-17	-24	-31	-38	-45	-52	-60	-67	-74	-81

Approximate Thresholds:
-25 Risk of frostbite in prolonged exposure
-35 Frostbite possible in 10 minutes with warm skin suddenly exposed Shorter time if skin is cool at the start.
-60

Frostbite possible in less than 2 minutes with warm skin suddenly exposed. Shorter time if skin is cool at the start.
1: Environment Canada, 2001a, 2001b
where $\mathrm{T}=$ Air temperature $\left({ }^{\circ} \mathrm{C}\right)$ and $\mathrm{V}=$ Observed wind speed at 10 m elevation (km/h).

		Saskatchewan Research Council Monthly Weather Summary				
	January 20		$\begin{array}{r} 2005 \\ \text { VALUE } \end{array}$	$\begin{array}{r} 2004 \\ \text { VALUE } \end{array}$	NORMAL OR EXTREME FOR CRS 1971-2000	EXTREME FOR SASKATOON STATIONS
	Average monthly Extreme mon Average monthly Extreme mon Monthly average No. of Frost-free	um (${ }^{\circ} \mathrm{C}$) imum (${ }^{\circ} \mathrm{C} /$ date) m (${ }^{\circ} \mathrm{C}$) mum (${ }^{\circ} \mathrm{C} /$ date) $\text { emp. }>0^{\circ} \mathrm{C} \text {) }$	$\begin{array}{r} -11.9 \\ 4.4 / 25 \\ -21.6 \\ -34.5 / 14 \\ -16.8 \\ 0 \end{array}$	$\begin{array}{r} \hline-14.6 \\ 0.9 / 11 \\ -23.5 \\ -41.0 / 28 \\ -19.1 \\ 0 \end{array}$	-11.6 $7.0 / 1986 / 11 \& 1993 / 30$ -21.8 $-43.9 / 1966 / 22 \& 1969 / 28 \& 29$ -16.7 0	$\begin{aligned} & 11.0 / 1980 / 23_{\mathrm{swt}} \\ & -48.9 / 1893 / 31_{\mathrm{SM}} \end{aligned}$
	Monthly growing Yearly total-to-d Monthly heating (Yearly total-to-d Monthly cooling (Yearly total-to-d	se)	$\begin{array}{r} 0.0 \\ 0.0 \\ 1078.3 \\ 1078.3 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{r} 0.0 \\ 0.0 \\ 1149.9 \\ 1149.9 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{r} 0.0 \\ 0.0 \\ 1076.9 \\ 1076.9 \\ 0.0 \\ 0.0 \end{array}$	
	Monthly total (mm) Yearly total-to-d Greatest daily (m Measurable preci) $\text { days (} \geq 0.2 \mathrm{~mm} \text {) }$	$\begin{array}{r} 16.0 \\ 16.0 \\ 3.2 / 01 \\ 14 \end{array}$	$\begin{array}{r} 16.7 \\ 16.7 \\ 3.5 / 30 \\ 14 \end{array}$	$\begin{array}{r} 18.2 \\ 18.2 \\ 15.4 / 1989 / 30 \\ 11.3 \end{array}$	$\begin{gathered} 66.1 / 1911_{\mathrm{SE}} \\ 30.5 / 1893 / 23_{\mathrm{SM}} \end{gathered}$
$\frac{2}{3}$	Average monthly Peak gust (speed	km/h) n/date)	$\begin{array}{r} 13.4 \\ 59.7^{\mathrm{N}} 21 \end{array}$	$\begin{array}{r} 13.8 \\ 58.6 \text { ESE30 } \end{array}$	$16.0{ }_{\text {SA }}$	$111.0^{\mathrm{W}} 1986 / 11_{\text {SA }}$
	Monthly bright su \% possible brig \% normal bright Bright Sunshine Monthly global ra Monthly diffuse ra	(hours) hine ne $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$ ($\mathrm{MJ} / \mathrm{m}^{2}$)	$\begin{array}{r} 95.7 \\ 36.9 \\ 92.6 \\ 24 \\ 124.0 \\ 79.8 \end{array}$	$\begin{array}{r} 45.5 \\ 17.6 \\ 44.0 \\ 17 \\ 107.0 \\ 75.7 \end{array}$	$\begin{array}{r} 103.3 \\ 39.8 \\ 23.8 \\ 129.9 \\ 71.4 \end{array}$	
言	Average temperature (${ }^{\circ} \mathrm{C}$) @ 9:00am	grass level $10 \mathrm{~cm} / 20 \mathrm{~cm}$ $50 \mathrm{~cm} / 100 \mathrm{~cm}$ $150 \mathrm{~cm} / 300 \mathrm{~cm}$	$\begin{array}{r} -10.6 \\ -8.6 /-6.9 \\ -5.2 /-1.0 \\ 1.4 / 4.5 \\ \hline \end{array}$	$\begin{array}{r} -17.4 \\ -9.6 /-7.6 \\ -4.7 /-0.7 \\ 1.6 / 4.6 \\ \hline \end{array}$	$\begin{array}{r} -8.3 /-7.6 \\ -3.8 /-0.2 \\ 1.8 / 4.5 \\ \hline \end{array}$	Normals Global and ifituse radiation lif61-1990 Soin Temperatures = 1661-1990 Wind Normal and Extreme are from Saskatoon Airport

For Your Information

January, named after the two-faced Roman god Janus, lived up to its name this year. Temperatures ranged from a balmy $4.4^{\circ} \mathrm{C}$ to a frigid $-34.5^{\circ} \mathrm{C}$. Twelve days recorded maximum temperatures above -10° while 14 days recorded minimum temperatures below $-25^{\circ} \mathrm{C}$. There were four days of above freezing temperatures at the end of the month to temper the $-30^{\circ} \mathrm{C}$ temperatures measured at the beginning. On the $25^{\text {th }}$, a daily maximum temperature of $4.4^{\circ} \mathrm{C}$ replaced the old 1993 record of $2.5^{\circ} \mathrm{C}$. Precipitation was variable with snow, rain and freezing-rain falling at various times during the month making walking and driving treacherous. Bright sunshine was 7.4% below normal with 12 days receiving less than one hour of sunshine and 7 days recording no bright sunshine.
Wide ranging temperatures during the month of January are not uncommon but in 1966, Pincher Creek, AB experienced one of the most bizarre fluctuations within an eight hour period. On January $6^{\text {th }}$ the temperature was -24.4° at $7 \mathrm{AM}, 0.6^{\circ}$ at 8 AM and -21.7° at 9AM. The temperature remained steady until 3PM when it once again rose to $2.2^{\circ{ }^{\circ}}$
${ }^{1}$ Phillips, 1988

Agriculture and
Agriculture et
Agri-Food Canada Agroalimentaire Canada
\leftrightharpoons CAMPBELLSCIENTIFIC

		Saskatchewan Research Council Monthly Weather Summary				
	February 2		$\begin{array}{r} 2005 \\ \text { VALUE } \end{array}$	$\begin{array}{r} 2004 \\ \text { VALUE } \end{array}$	AL OR EXTREME FOR CRS 1971-2000	EXTREME FOR SASKATOON STATIONS
	Average monthly Extreme mont Average monthly Extreme mont Monthly average No.of Frost-free	m ($\left.{ }^{\circ} \mathrm{C}\right)$ imum (${ }^{\circ} \mathrm{C} /$ date) $m\left({ }^{\circ} \mathrm{C}\right)$ mum (${ }^{\circ} \mathrm{C} /$ date) mp. $>0^{\circ} \mathrm{C}$)	$\begin{array}{r} -5.2 \\ 8.3 / 02 \\ -15.7 \\ -26.5 / 07 \\ -10.5 \\ 0 \end{array}$	$\begin{array}{r} \hline-10.1 \\ -1.5 / 07 \\ -20.2 \\ -33.5 / 24 \\ -15.2 \\ 0 \end{array}$	$\begin{array}{r} -7.7 \\ 7.9 / 2002 / 17 \\ -17.6 \\ -41.1 / 1972 / 06 \\ -12.6 \\ 0.2 \end{array}$	$\begin{gathered} 12.8 / 1931 / 19_{\mathrm{SE}} \\ -50.0 / 1893 / 01_{\mathrm{SM}} \end{gathered}$
	Monthly growing Yearly total-to-d Monthly heating Yearly total-to-d Monthly cooling Yearly total-to-d	we)	$\begin{array}{r} 0.0 \\ 0.0 \\ 797.1 \\ 1875.5 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{r} 0.0 \\ 0.0 \\ 928.7 \\ 1961.8 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{r} 0.0 \\ 0.0 \\ 886.2 \\ 1963.1 \\ 0.0 \\ 0.0 \end{array}$	
	Monthly total (mm) Yearly total-to-d Greatest daily (m Measurable preci	$\text { days }(\geq 0.2 \mathrm{~mm})$	$\begin{array}{r} 16.4 \\ 32.4 \\ 7.7 / 04 \\ 7 \end{array}$	$\begin{array}{r} 8.1 \\ 15.3 \\ 4.1 / 17 \\ 12 \end{array}$	$\begin{array}{r} 13.3 \\ 31.5 \\ 14.2 / 1979 / 13 \\ 8.9 \end{array}$	$\begin{gathered} 43.7 / 1924_{\mathrm{SE}} \\ 30.0 / 1962 / 03_{\mathrm{SA}} \end{gathered}$
$\frac{2}{3}$	Average monthly Peak gust (speed	km/h) n/date)	$\begin{array}{r} 11.9 \\ 43.6^{\text {NNE }} 03 \end{array}$	$\begin{array}{r} 13.3 \\ 57.7^{\mathrm{N} 11} \end{array}$	16.0	$106.0^{\text {N } 1988 / 22 ~}{ }_{\text {SA }}$
	Monthly bright su \% possible brig \% normal brigh Bright Sunshine Monthly global ra Monthly diffuse ra	hours) ine ne $\mathrm{MJ} / \mathrm{m}^{2}$) $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	$\begin{array}{r} 143.9 \\ 51.5 \\ 108.8 \\ 26 \\ 219.5 \\ 104.1 \end{array}$	$\begin{array}{r} 110.0 \\ 39.5 \\ 83.1 \\ 19 \\ 202.1 \\ 107.6 \end{array}$	$\begin{array}{r} 132.3 \\ 47.4 \\ 24.2 \\ 210.1 \\ 105.3 \end{array}$	Normals Global and diffuse radiation = 1961-1990 Soil Temperatures = 1961-1990 Wind Normal and Extreme are from Saskatoon Airport
$\overline{0}$	Average temperature $\left({ }^{\circ} \mathrm{C}\right)$ @ 9:00am	grass level $10 \mathrm{~cm} / 20 \mathrm{~cm}$ $50 \mathrm{~cm} / 100 \mathrm{~cm}$ $150 \mathrm{~cm} / 300 \mathrm{~cm}$	$\begin{array}{r} -5.2 \\ -4.6 /-3.5 \\ -3.5 /-1.4 \\ 0.4 / 3.0 \\ \hline \end{array}$	$\begin{array}{r} -7.5 \\ -7.3 /-6.1 \\ -4.7 /-1.7 \\ 0.2 / 3.1 \end{array}$	$\begin{array}{r} -7.3 /-6.8 \\ -4.1 /-1.0 \\ 0.8 / 3.3 \end{array}$	$\begin{array}{\|l\|} \hline \text { Saskatoon Stations } \\ \text { SM=interrupted readings } \\ \text { (NWMP) about 1892-1900 } \\ \text { SE= Eby (pioneer) 1901-41 } \\ \text { SA= S'toon Airport 1942- } \\ \text { Present } \\ \hline \end{array}$

For Your Information

Bright, white and warm all describe February 2005. We experienced 11.6 hours above average bright sunshine with three out of twenty-six bright sunshine days recording less than one hour. The two days of no bright sunshine were devoted to increasing the surface albedo with the accumulation of 14.6 cm of new, white snow. By the $9^{\text {th }}$, the snow had settled to a 23 cm depth on the ground; 13 cm more than the beginning of the month. By February $28^{\text {th }}$, snow depth was still a respectable 21 cm . Temperatures were ideal for outdoor enthusiasts taking advantage of the new snow. The first half of the month had six maximum temperatures above $0^{\circ} \mathrm{C}$ while the last half only had two temperatures below $-10^{\circ} \mathrm{C}$ for the daytime maximum. On the $2^{\text {nd }}$, a new monthly maximum record was set at $8.3^{\circ} \mathrm{C}$ breaking the 2002 record of $7.9^{\circ} \mathrm{C}$ by $0.4^{\circ} \mathrm{C}$. Since the New Year, the station has recorded 10 days with temperatures above freezing during what is usually the coldest time of year.
The coldest, official temperature recorded in Canada was at Snag, Yukon on February 3rd, 1947. The weather observer used a small fine file to scratch directly on to the thermometer where the alcohol had fallen as it was below the last mark. After recalibration, $-63^{\circ} \mathrm{C}$ was accepted setting the mark for the coldest day in North America as well as Canada. That winter had been an exceptionally cold with six days in December and 11 days in January recording temperatures below $-50^{\circ} \mathrm{C}$. From January $27^{\text {th }}$ to February $5^{\text {th }}$ temperatures remained below $-55^{\circ} \mathrm{C}$. Unofficially, colder temperatures have been reported. On January 7, 1982, near Fort Nelson, B.C. a temperature of $-71.1^{\circ} \mathrm{C}$ was reported from a research site studying permafrost. This was the result of intense cold air ponding in the mountain valley overnight. The nearby airport reported only $-42^{\circ} \mathrm{C} .{ }^{1}$ 'Phillips, 1998.

		Saskatchewan Research Council Monthly Weather Summary				
	March 2005		$\begin{array}{r} 2005 \\ \text { VALUE } \end{array}$	$\begin{array}{r} 2004 \\ \text { VALUE } \end{array}$	NORMAL OR EXTREME FOR CRS 1971-2000	EXTREME FOR SASKATOON STATIONS
	Average monthly Extreme mont Average monthly Extreme mont Monthly average No. of Frost-free	um (${ }^{\circ} \mathrm{C}$) ximum (${ }^{\circ} \mathrm{C} /$ date) um (${ }^{\circ} \mathrm{C}$) imum (${ }^{\circ} \mathrm{C} /$ date) emp. $>0^{\circ} \mathrm{C}$)	$\begin{array}{r} \hline-0.5 \\ 8.7 / 30 \\ -8.9 \\ -18.3 / 16 \\ -4.7 \\ 1 \end{array}$	$\begin{array}{r} \hline 2.2 \\ 15.0 / 30 \\ -8.6 \\ -25.7 / 03 \\ -3.2 \\ 2 \end{array}$	$\begin{array}{r} \hline-0.7 \\ 20.0 / 1993 / 23 \\ -10.5 \\ -38.9 / 1972 / 02 \\ -5.6 \\ 1.2 \end{array}$	$\begin{gathered} 22.8 / 1910 / 23_{\mathrm{SE}} \\ -43.3 / 1897 / 14_{\mathrm{SM}} \end{gathered}$
	Monthly growing Yearly total-to-d Monthly heating Yearly total-to-d Monthly cooling (Yearly total-to-d	(e)	$\begin{array}{r} 0.0 \\ 0.0 \\ 703.9 \\ 2579.4 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{r} 5.0 \\ 5.0 \\ 658.3 \\ 2593.7 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{r} 2.4 \\ 2.4 \\ 732.4 \\ 2695.5 \\ 0.0 \\ 0.0 \end{array}$	
	Monthly total (mm) Yearly total-to-d Greatest daily (m Measurable preci	m) days ($\geq 0.2 \mathrm{~mm}$)	$\begin{array}{r} 19.9 \\ 52.3 \\ 8.5 / 06 \\ 16 \end{array}$	$\begin{array}{r} 19.4 \\ 45.5 \\ 2.7 / 27 \\ 19 \end{array}$	16.2 47.7 $32.0 / 1967 / 30$ 9.0	$\begin{array}{r} 59.0 / 1927_{\text {SE }} \\ 32.0 / 1967 / 30 \end{array}$
$\begin{aligned} & \frac{2}{3} \\ & \hline \end{aligned}$	Average monthly Peak gust (speed	(km/h) on/date)	$\begin{array}{r} 15.8 \\ 62.3^{\mathrm{NW}} 09 \end{array}$	$\begin{array}{r} 16.5 \\ 75.4^{\mathrm{NW}} 10 \end{array}$	17.0	93.0w1959/18
	Monthly bright su \% possible brig \% normal bright Bright Sunshine Monthly global ra Monthly diffuse ra	(hours) hine ine $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$ $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	$\begin{array}{r} 168.7 \\ 45.6 \\ 96.3 \\ 25 \\ 387.1 \\ 182.0 \end{array}$	$\begin{array}{r} 170.7 \\ 46.1 \\ 97.4 \\ 30 \\ 384.5 \\ 174.7 \end{array}$	$\begin{array}{r} 175.2 \\ 47.4 \\ 27.1 \\ 362.4 \\ 173.9 \end{array}$	
$\left\lvert\, \begin{gathered} \hat{0} \\ \hline \end{gathered}\right.$	$\begin{aligned} & \text { Average } \\ & \text { temperature }\left({ }^{\circ} \mathrm{C}\right) \\ & \text { @ 9:00am } \end{aligned}$	grass level $10 \mathrm{~cm} / 20 \mathrm{~cm}$ $50 \mathrm{~cm} / 100 \mathrm{~cm}$ $150 \mathrm{~cm} / 300 \mathrm{~cm}$	$\begin{array}{r} -1.9 \\ -2.3 /-1.6 \\ -2.1 /-0.9 \\ 0.4 / 2.4 \\ \hline \end{array}$	$\begin{array}{r} -1.7 \\ -1.0 /-0.2 \\ -1.2 /-0.1 \\ 0.7 / 2.5 \end{array}$	$\begin{array}{r} -2.7 /-2.2 \\ -1.8 /-0.6 \\ 0.4 / 2.5 \\ \hline \end{array}$	

For Your Information

"In like a lamb and out like a lamb with a lion prowling around in between" could described March 2005. Maximum daily temperatures ranged between $-9.6^{\circ} \mathrm{C}$ and $8.7^{\circ} \mathrm{C}$ while the minimum temperatures ranged between $-18.3^{\circ} \mathrm{C}$ and $0.6^{\circ} \mathrm{C}$. March $29^{\text {th }}$ recorded the first frost-free day of 2005 . Precipitation, 3.7 mm above normal, was delivered over a near record period of 16 days. Only March 2004 had more precipitation days with 19. Mid-March tabulated 12 continuous days of precipitation with the exception of the $20^{\text {th }}$ when only a trace was observed. Bright sunshine was below normal for both the number of days and hours. As soil temperatures begin to warm, it appears that the frost zone this winter reached the 150 cm level but not the 300 cm level.
Animals are often associated with the weather and weather events. The expression, "raining cats and dogs" stems from the folk belief that felines and canines have the ability to influence the weather. These attributions may stem partly from the powers and characteristics of the Norse gods and their attendant creatures and partly to both animals' sensitivity to changes in the weather. Cats are associated with torrential rain while storm winds are the dog's province. ${ }^{1}$
${ }^{1}$ Gibson, 2003

For Your Information

A pleasant April had gardening enthusiasts outside earlier than usual. Mean temperatures were $2.2^{\circ} \mathrm{C}$ above normal accompanied by seven extra frost-free days. On April $8^{\text {th }}$, a record daily maximum temperature of $24.1^{\circ} \mathrm{C}$ broke the old 1987 record of $19.5^{\circ} \mathrm{C}$. Temperatures remained warm until the last days of the month when colder weather, along with snow, was experienced. Precipitation was a little more than half of normal. During the night of April $14^{\text {th }}$ and the morning of the $15^{\text {th }}$, rain, slush and snow fell. As this was accompanied by 61.3 to $87.1 \mathrm{~km} / \mathrm{h}$ wind gusts, the total of 5.0 mm may be low. Along with spring temperatures, bright sunshine hours were higher than normal with only one day not receiving some bright sunshine.
In the early morning hours of April 29, 1903, 82 million tonnes of limestone slide down the face of Turtle Mountain and buried part of the mining town of Frank, Alberta. In less than 100 seconds, the rockslide/avalanche [150 metres deep (50 stories), 425 metres long, ($41 / 2$ football fields) and one kilometre wide] roared down into the valley and partially up the other side. Of the 100 people in the path of the slide, only 23 escaped. The cause of the slide is thought to have been a combination of the unstable nature of the mountain (the Indians of the area called it "The Mountain that Walked"), coal mining inside the mountain, water action in summit cracks and the severe weather conditions at the time. ${ }^{1}$
${ }^{1}$ Anon., nd

For Your Information

May's temperatures were slightly below normal with only eight days experiencing temperatures over $20^{\circ} \mathrm{C}$. A daily minimum record of $-6.0^{\circ} \mathrm{C}$, recorded on the $14^{\text {th }}$, ended the frost season and, hopefully, the growing season has officially begun. This is potentially four days early than the normal date of May $18^{\text {th }}$. The earliest frost-free date for CRS is May 2,1977 while the latest date is June 15,1969 . Rainfall was 66% of normal increasing the yearly deficit to 82% of normal. From the $16^{\text {th }}$ to the $19^{\text {th }}, 17.8 \mathrm{~mm}$ or 60% of the total rain for the month was measured. While the average daily winds were normal, the station recorded 28 hours when the maximum wind gusts were 'Near Gale' force ($51-62 \mathrm{~km} / \mathrm{h}$) and 1 hour of 'Gale' force ($63-75 \mathrm{~km} / \mathrm{h}$) winds. Sixteen days recorded maximum daily winds under $40 \mathrm{~km} / \mathrm{h}$.
In 1787, Francis Beaufort went to sea as a 13 year-old cabin boy. Even at this age, he recognized the value of being weatherwise and began keeping a meteorological journal; a practice he continued for his 68 years of service. He was knighted for his many contributions with the two most notable being his standardization of wind discriptions (Beaufort Scale) and weather notation codes which are the foundation of the present world-wide systems used today, 170 years later. ${ }^{1}$

¹Heidorn, 1998

For Your Information

No doubt 'ark building' was on the minds of a few people during the 67.4 mm of rain which fell during the $28^{\text {th }}$ and the $29^{\text {th }}$. Daily as well as monthly rainfall records were drowned in the deluge. Along with four new daily records, a new monthly record of 171.0 mm will replace the old 160.1 mm record set in 1991. The monthly rainfall was 111.5 mm or 287% greater than normal. Ten days recorded rainfall amounts greater than 5mm; two more than the previous 1991 record. Other area stations report similar monthly rainfall amounts with the airport and Kernen Farm reporting preliminary totals of 160.5 mm and 173.2 mm respectfully. ${ }^{1}$ June was cooler than normal with only one new daily maximum temperature record being set. On the $22^{\text {nd }}$ the maximum temperature of $32.0^{\circ} \mathrm{C}$ inched above the old 1970 record of $31.7^{\circ} \mathrm{C}$. Wind gusts over $51 \mathrm{~km} / \mathrm{h}$ were recorded on six days including one early morning wind on June $22^{\text {nd }}$ measuring $109.7 \mathrm{~km} / \mathrm{h}$.
Wind descriptions have changed over the years. In Manitoba in 1891, an 'amateur' cyclone destroyed the upper storey of a log cabin depositing the unconscious family on the ground among the broken furniture and building materials. ${ }^{2}$ This leaves one to wonder what a 'professional' cyclone would have done. ${ }^{1}$ Flysak, 2005, Environment Canada 2006a,b. 2 Phillips, 2004

	Saskatchewan ironment 4 SaskPower	Agriculture and Agri-Food Canada Scan	Agriculture et Agroalimentaire Canada BELLSCIENTIFIC		

Saskatchewan Research Council Monthly Weather Summary					
	July 2005	$\begin{array}{r} 2005 \\ \text { VALUE } \end{array}$	$\begin{array}{r} 2004 \\ \text { VALUE } \end{array}$	ORMAL OR EXTREME FOR CRS 1971-2000	EXTREME FOR SASKATOON STATIONS
	Average monthly maximum $\left({ }^{\circ} \mathrm{C}\right)$ Extreme monthly maximum (${ }^{\circ} \mathrm{C} /$ date) Average monthly minimum (${ }^{\circ} \mathrm{C}$) Extreme monthly minimum (${ }^{\circ} \mathrm{C} /$ date) Monthly average (${ }^{\circ} \mathrm{C}$) No. of Frost-free days (Temp. $>0^{\circ} \mathrm{C}$)	$\begin{array}{r} \hline 25.3 \\ 32.8 / 31 \\ 12.4 \\ 5.8 / 28 \\ 18.9 \\ 31 \end{array}$	$\begin{array}{r} \hline 23.9 \\ 32.9 / 19 \\ 12.3 \\ 4.7 / 29 \\ 18.1 \\ 31 \end{array}$	24.8 $39.3 / 2001 / 05$ 11.5 $1.7 / 1967 / 02 \& 1978 / 09$ 18.2 31	40.0/1919/17\&1941/19\&1946/30 $-0.6 / 1918 / 25_{\mathrm{SE}}$
DEGREE-DAYS	Monthly growing ($5^{\circ} \mathrm{C}$ base) Yearly total-to-date growing Monthly heating ($18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ($18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling	429.4 1010.0 32.1 3266.6 58.5 68.9	406.0 866.1 48.1 3424.9 51.1 60.1	$\begin{array}{r} 408.4 \\ 1015.2 \\ 35.3 \\ 3438.7 \\ 40.7 \\ 70.7 \end{array}$	
	Monthly total (mm) Yearly total-to-date (mm) Greatest daily (mm/date) Measurable precipitation days ($\geq 0.2 \mathrm{~mm}$)	$\begin{array}{r} 44.4 \\ 309.9 \\ 9.6 / 01 \\ 12 \end{array}$	$\begin{array}{r} 95.4 \\ 265.1 \\ 44.4 / 07 \\ 15 \end{array}$	$\begin{array}{r} 58.0 \\ 233.1 \\ 45.5 / 1968 / 29 \\ 12.0 \end{array}$	$\begin{gathered} 162.9 / 1928_{\text {SE }} \\ 79.2 / 1946 / 03_{\text {US }} \end{gathered}$
$\frac{2}{2}$	Average monthly speed (km/h) Peak gust (speed/direction/date)	$\begin{array}{r} 13.2 \\ 69.8^{\text {wNw }} 23 \end{array}$	$\begin{array}{r} 13.0 \\ 74.2^{N N W} 20 \end{array}$	16.0	113.0 E1955/05 ${ }_{\text {SA }}$
	Monthly bright sunshine (hours) \% possible bright sunshine \% normal bright sunshine Bright Sunshine days Monthly global radiation($\mathrm{MJ} / \mathrm{m}^{2}$) Monthly diffuse radiation ($\mathrm{MJ} / \mathrm{m}^{2}$)	$\begin{array}{r} 306.0 \\ 61.0 \\ 100.1 \\ 31 \\ 708.6 \\ 216.1 \end{array}$	243.1 48.5 79.5 27 587.8 244.2	305.7 61.0 30.3 633.5 216.5	Saskatoon Stations SE= Eby (pioneer) 1901-41 SA= S'toon Airport 1942- US Univ. of SK 1915-64
言	Average grass level temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ $150 \mathrm{~cm} / 300 \mathrm{~cm}$	$\begin{array}{r} 25.0 \\ 15.4 / 16.8 \\ 15.4 / 13.4 \\ 11.4 / 7.6 \end{array}$	$\begin{array}{r} 23.0 \\ 16.5 / 17.4 \\ 15.8 / 12.8 \\ 10.5 / 7.1 \end{array}$	$\begin{array}{r} 18.0 / 18.8 \\ 16.8 / 13.2 \\ 11.1 / 7.5 \end{array}$	Normals Global and diffuse radiation $=1961$-1990 Soil Temperatures = 1961-1990 Wind Normal and Extreme are from Saskatoon Airport
	or Your Information ighlights for July: Record maximum daily temperatures July 6 new $=31.3^{\circ} \mathrm{C}$; old $31.1^{\circ} \mathrm{C} / 197$ Record minimum daily temperature July 28 new $=5.8^{\circ} \mathrm{C}$; old $6.0^{\circ} \mathrm{C} / 1985$ ays with maximum temperature $>30^{\circ} \mathrm{C}=6$ Days with maximum temperature $>32^{\circ} \mathrm{C}=3$ Days with extreme cooling degree-days (base	\&79 $4)=2$	cord daily July ys with pr e show m ly 5, 1939 les. The crew of 300 epare for th	ecipitation new = 9.2; old 8.0/198 pitation $>5 \mathrm{~mm}=4$ st go on! Wind and rain extensively damaging th rris wheels were moved immediately began rep next day's visitors. Phillip	9 in struck Winnipeg on he Conklin Fair show d more than 2 metres. pairing the damage to s, 2004
	Easkatchewan	Agriculture Agri-Food	Agriculture Agroalimen BELLSCIENTIF \qquad	ire Canada	

For Your Information

If you felt cheated on the hot weather this August, the statistics show you are right as the maximum monthly mean was 2.1° lower than normal. Normally August averages five days over $30^{\circ} \mathrm{C}$, two days over $32^{\circ} \mathrm{C}$ and 1 day over $35^{\circ} \mathrm{C}$ but this year only three days recorded temperatures between $30^{\circ} \mathrm{C}$ and $32^{\circ} \mathrm{C}$. Cooling degree-days were 65% of normal. Bright sunshine was 57.5 hours less than normal. If you were a duck, August was ideal with 49% extra precipitation. With August's precipitation, the station has now received more than it normally records for the whole year. Two new daily precipitation records were set. The $24^{\text {th }}$ recorded 0.7 mm more than the old 1989 record of 3.7 mm and the $30^{\text {th }}$ dripped by the 2002 record of 7.2 mm by 0.4 mm .
How does Saskatchewan rank, weather-wise, with the rest of Canada? We rank "Number 1 " for the most sunny days in cold months, most sunny days year-round and the lowest annual snowfall. For the fewest fog days, fewest annual snow days, most sunny days in warm months, sunniest summer and sunniest year-round, we rank second. We come in third for most annual dry days, most thunderstorm days, sunniest fall, and sunniest winter and spring combined. ${ }^{1}$ 'Enviroment Canada 2005

For Your Information

September: the month of leaves turning color, of the gardens and fields being harvested, of cooler temperatures but usually not of overwhelming rainfall events such as were experienced on the $10^{\text {th }}$ and $11^{\text {th }}$. Due to the steady afternoon and evening downpour of the $10^{\text {th }}$, coupled with the continued rainfall of the $11^{\text {th }}, 61.0 \mathrm{~mm}$ of rain accumulated over a 37 hour period. Daily records for CRS were easily washed out on both days. Almost 75% of the monthly total fell during this period; double the normal precipitation for the entire month. With an additional 20.6 mm falling during the rest of the month, the old 71.6 mm monthly record set in 1969 was easily surpassed. The cumulative total, 445.5 mm , is 3.5 mm more than the 1991 September cumulative total. 1991 is the wettest year on record at CRS. If moderate precipitation continues for the rest of the year, 2005 may be the new "wettest year" at CRS. In spite of the rain, temperatures were slightly above normal and surprisingly, the bright sunshine was 5.6% or 21.4 hours above normal.
On September 8, 1952 the CBC had it's first official national television broadcast. What was the subject of the show? A subject of interest to all Canadians across the country - the weather of course! ${ }^{1}$

1 Heidorn, 2003

For Your Information

It was delightful to be outside this October with its above seasonal temperatures and below average precipitation. The above seasonal temperatures were accompanied by above average bright sunshine and below average winds. The monthly average temperature was $1.4^{\circ} \mathrm{C}$ above normal. Only one daily average temperature was below $0^{\circ} \mathrm{C}$. Even though we had only four days with measurable precipitation, a daily record was broken. On October $27^{\text {th }}$, the old 1.0 mm set in 1970 and tied in 1971 was replaced with 1.3 mm . Gardeners and dog walkers alike enjoyed an extra 50 hours of sunshine more than normal. High winds were recorded on the $15^{\text {th }}$, when winds reach 'Gale' force $(63-75 \mathrm{kph})$ during the late afternoon.

Parents and children alike watch the thermometer and barometer as October $31^{\text {st }}$ arrives. Hallowe'en is much more pleasant when the weather co-operates. Since 1964, when CRS was established, 13 Hallowe'ens have had measurable precipitation, with six out of the past seven years recording some form of precipitation. Normal average temperatures for October $31^{\text {st }}$ range between $-5.3^{\circ} \mathrm{C}$ and $4.4^{\circ} \mathrm{C}$. During the past 15 years, 7 years have been colder than $-5.3^{\circ} \mathrm{C}$.

For Your Information
November's average maximum and minimum temperatures were $3.5^{\circ} \mathrm{C}$ to $4.8^{\circ} \mathrm{C}$ above normal respectively. Even though temperatures went above freezing twenty times this month, they did not break any records for extremes temperatures. Die-hard golfers and other outdoor enthusiasts enjoyed the unexpected mild weather. Colder weather occurred mid-month and then again for the last few days. Precipitation was slightly above normal with one daily record being set on the $2^{\text {nd }}$ when 11.3 cm of snow fell breaking the 1984 record of 6.7 cm . Precipitation was observed on 15 days. With the warm air temperatures, soil temperatures in the upper levels are above normal but the $100 \mathrm{~cm}, 150 \mathrm{~cm}$ and 300 cm levels are near normal. Bright sunshine occurred on 23 days with total hours being 7.9% below normal.
Mild weather was hoped for on November $22^{\text {nd }}, 2003$ when the largest professional outdoor hockey game, witnessed by over 57 thousand fans, took place in Edmonton. Unfortunately temperatures dropped to $-20^{\circ} \mathrm{C}$ coupled with a wind chill of -28 C . Amazingly, most fans stuck around. Only one person suffered mild hypothermia - and it wasn't the streaker! ${ }^{1}$
${ }^{1}$ Phillips 2004

INSTRUMENTS USED AT SASKATOON SRC CRS AND GLOSSARY OF TERMS

(Unless otherwise stated, source for definitions of terms is Environment Canada, 1978)
BEAUFORT WIND SCALE was developed by Admiral Sir Francis Beaufort in 1805 and adopted by the British Navy in 1838. It consisted of 13 degrees of wind strength, from calm to hurricane, based upon the effects of various wind strengths upon the amount of canvas carried by the fully rigged frigates of the period. Over the years it has been modified as needed and in 1946 the scale values (Force Numbers) were defined by ranges of wind speed as measured at a height of 10 meters above the surface. In effect, this transformed the 'Beaufort Wind Force Scale' into the 'Beaufort Wind Speed Scale'. This scale is the current standard scale for visual observations of the wind (Heidorn, 1998).

BRIGHT SUNSHINE is the unobstructed direct radiation from the sun, as opposed to the shading of a location by clouds or by other atmospheric obstructions.
Number of Days is defined as the total number of days when at least 0.1 of an hour of bright sunshine was recorded.
Percentage Possible refers to the ratio of measured bright sunshine hours to the total possible daylight hours in a given period, expressed as a percentage.
Possible daylight hours are taken from the sunrise/set tables provided by the National Research Council of Canada, Herzberg Institute of Astrophysics, Victoria, BC.
Total is the sum of the daily bright sunshine values in hours and tenths of hours as measured by an automated sunshine recorder using voltaic cells.

DEGREE-DAY is an index for various temperature related calculations
Cooling (CDD) is the cooling requirement to achieve a stipulated comfort value in an indoor environment. For most purposes, a temperature of greater than $18^{\circ} \mathrm{C}$ is considered uncomfortable and supplementary cooling is required. On a specific day, the amount by which $18^{\circ} \mathrm{C}$ is less than the daily average temperature defines the number of cooling degree-days for that day. Mathematically:
$\mathrm{CDD}=\left(\mathrm{T}-18^{\circ} \mathrm{C}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$ if T is equal to or less than $18^{\circ} \mathrm{C}, \mathrm{CDD}=0$.
Monthly and annual values of CDD are obtained by summing daily values.
Growing (GDD) is the growing requirement in order for plant growth to proceed. The air temperature must exceed a critical value appropriate to the plant species in question. For many members of the grass family, including most commercial cereals grown on the prairies, a base temperature of $5.0^{\circ} \mathrm{C}$ has been established. On a specified day, the difference between the daily average temperature and the $5.0^{\circ} \mathrm{C}$ base temperature defines the number of growing degree-days.
Mathematically:
GDD $=\left(\mathrm{T}-5.0^{\circ} \mathrm{C}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$ if T is equal to or less than $5.0^{\circ} \mathrm{C}, \mathrm{GDD}=0$.
Daily GDD values are summed to provide totals for the appropriate month, growing season or year.
Heating (HDD) is the heating requirement to achieve a stipulated comfort value in an indoor environment. For most purposes, a temperature of less than $18^{\circ} \mathrm{C}$ is considered uncomfortable and supplementary heating is required. On a specific day, the amount by which $18^{\circ} \mathrm{C}$ exceeds the daily average temperature defines the number of heating degree-days for that day.
Mathematically:
$\operatorname{HDD}=\left(18^{\circ} \mathrm{C}-\mathrm{T}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$ if T is equal to or greater than $18^{\circ} \mathrm{C}, \mathrm{HDD}=0$.
Monthly and annual values of HDD are obtained by summing daily values.
EXTREME is the highest or lowest value of a particular element recorded during the period in question.

EXTREME ALL YEARS Temporal comparisons at a point are also of value in some types of climatic studies. Therefore, it is desirable to produce the maximum length of reliable climatic record to carry out studies over a period of time. Data are drawn from the following data sets:
Saskatoon, SRC:1963 to present
Saskatoon, University of Saskatchewan:1916 to 1963
Saskatoon, City:1892 to present
Station locations, exposures and measurement procedures were subject to change during this time period. Data are not adjusted and users are cautioned accordingly.

FROST is recorded on each occasion when the daily minimum temperature is equal to or less than $0^{\circ} \mathrm{C}$.
NORMAL VALUE (1971-2000) In climatology it is often useful to make spatial comparisons of particular element values over a common time period. At an interior continental site such as Saskatoon, a period of 30 years is required to produce statistically stable estimates of the more variable elements. To facilitate spatial comparisons, the World Meteorological Organization recommends the standard normal (average) period of thirty years. The current normal period for data analysis at CRS is from January 1 st, 1971 to December 31 ${ }^{\text {st }}, 2000$. Data derived from CRS conform to this standard, except where noted. The normals for CRS have been calculated using the data collected during this standard period. Where gaps existed, data from the nearest climate station were used and referenced as to being used.

POTENTIAL EVAPOTRANSPIRATION (Thornthwaite Method) is the amount of water which will be lost from a surface completely covered with vegetation if there is sufficient water in the soil at all times for the use of the vegetation. It is computed by means of an empirical formula involving mean monthly temperature and average length of day.
Mathematically:
$\mathrm{PET}=\mathrm{mT}^{\wedge} \mathrm{a}$ where PET $=$ Potential of Evaportranspiration; $\mathrm{m}=\%$ of day length for the month as compared to the year; $\mathrm{T}=$ Temperatue ${ }^{\circ} \mathrm{C}$ when T is less than or equal to 0 ; otherwise $\mathrm{T}=\mathrm{O}$; and $\mathrm{a}=$ yearly heat index. (Thornthwaite and Mather, 1955)

PRECIPITATION

Day is recorded on occasions when the amount of precipitation in a 24 -hour period equals or exceeds 0.2 mm water. An asterisk $\left(^{*}\right.$) appearing in the average column denotes the occurrence of measurable precipitation on one or more occasions, and that the calculated 30-year average amounts to less than a trace. The so-called climatological day, beginning at $9 \mathrm{a} . \mathrm{m}$. standard time on the date of reference and ending at 9 a.m. the next morning, was employed in record keeping up to January 1994. On February 1, 1994, after consultation with Environment Canada, record keeping was changed to the 24 -hour period of 0000 hours -2400 hours to conform to their reporting of climatological statistics.
Total is the sum of the daily recorded precipitation. The snowfall component of precipitation is recorded as an equivalent amount of liquid water. For particulars on precipitation measurement procedures and instruments, the reader is referred to the Environment Canada publication "Manual of Climatological Observation's", 2nd Ed., January, 1978. The notation "T" refers to a trace of precipitation (less than 0.2 mm water equivalent). As of August 7, 1993, total precipitation was measured using the Belfort weighing gauge for the winter season and the tipping bucket during frost-free period.

SEASONS Meteorologists prefer to divide the year into four 3-month periods based primarily on temperature. Thus winter is defined as December, January, and February; spring as March, April and May; summer as June, July and August; and fall as September, October and November. (Lutgens and Tarbuck, 1992)

SOIL TEMPERATURE under a short grass surface with normal snow accumulation, is measured according to procedures outlined in the Environment Canada publication "Soil Temperature" January 1, 1976. Depths below surface at which soil temperature measurements are made are: $5 \mathrm{~cm}, 10 \mathrm{~cm}, 20 \mathrm{~cm}, 50 \mathrm{~cm}, 100 \mathrm{~cm}, 150 \mathrm{~cm}$ and 300 cm . Since soil temperature is affected by profile structure and water content, extrapolation of the measured data is difficult.

SOLAR RADIATION

Diffuse - Total is radiation reaching the earth's surface after having been scattered from the direct solar beam. The instrument used is an Eppley pyranometer with a shade ring (See SOLAR RADIATION-Global- Total).
Global - Total is the sum of the direct solar and diffuse radiation during the period in question. Measurements are carried out on a horizontal surface near ground level and integrated over the whole celestial dome, summing the diffuse and direct components of the solar beam. The temperature-compensated Eppley pyranometer is used. The standard metric unit of measurement is the megajoule per square metre $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$. (To facilitate comparison with past years' data: $1.0 \mathrm{MJ} / \mathrm{m}^{2}=23.895$ langleys). Comparison is provided with a provisional average based on 16 years of data (1975-1990).

SPELLS - Temperature spells are defined as a sequence of days when the daily maximum temperature is higher than or equal to $30^{\circ} \mathrm{C}$ (hot spell) or the daily minimum temperature is lower than or equal to $-30^{\circ} \mathrm{C}$ (cold spell).

SUNRISE/SUNSET times have been included in this report. They have been acquired from the National Research Council, Canada, Herzberg Institute of Astrophysics.

TEMPERATURE

Average Annual is the average of the daily average temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ for one year.
Average Daily is defined as the arithmetic mean of the daily maximum temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ and the daily minimum temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ for the day in question.
Average Maximum is the average of the daily maximum temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ average over the appropriate time periods. For details concerning measurement procedures, the reader is referred to the Environment Canada publication, "Manual of Climatological Observations", 2nd Ed., January, 1978.
Average Minimum is the average of the daily minimum temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ averaged over the appropriate time periods. Refer to TEMPERATURE-Average Maximum concerning measurement procedures.
Average Monthly is the average of the daily average temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ for the month under consideration.

WIND CHILL describes a sensation, the way we feel as a result of the combined cooling effect of temperature and wind. This feeling can't be measured using an instrument, so a mathematical formula was developed in 1939 that related air temperature and wind speed to the cooling sensation. This formula was revised in 2001 by a team of scientists and medical experts from Canada and the U.S. with the Canadian Department of National Defence contributing human volunteers. The new index is based on the loss of heat from the face (Environment Canada 2001a).

WIND SPEED

Average is the average of the hourly wind speeds for the period in question measured in kilometres per hour (km $/ \mathrm{h}$). Average hourly wind speeds are obtained from a RM Young Wind Monitor anemometer at a height of 10 m .

Peak Gust refers to the highest instantaneous value recorded by the anemometer system for the period of reference, irrespective of direction and/or duration. Comparison is with published data for Environment Canada, Saskatoon Airport station.
see also Beaufort Wind Scale

REFERENCES AND BIBLIOGRAPHY

Anonymous, no.date. Frank Slide, Alberta: The Day the Mountain Fell. http://www3.sympatico.ca/goweezer/canada/ frank.htm (accessed May 4, 2005).

Christiansen, E.A. (Ed.), 1970. Physical Environment of Saskatoon, Canada. Saskatchewan Research Council, Saskatoon, SK, in cooperation with National Research of Canada, Ottawa, ON.

Environment Canada, Atmospheric Environment Service (AES). 1975. 1974 Annual Meteorological Summary. AES, Saskatoon, SK.

Environment Canada, Atmospheric Environment Service (AES). 1978. Manual of Climatological Observations, 2nd Ed. AES, Downsview, ON

Environment Canada, Atmospheric Environment Service, (AES). 1992. AES Guidelines for Co-operative Climatological Autostation. Environment Canada, Downsview, ON.

Environment Canada, Atmospheric Environment Service (AES). 1993. Canadian Climate Normals 1961-1990. Canadian Climate Centre, Downsview ON.

Environment Canada, Meteorological Service of Canada, 2001a. Canada's New Wind Chill Index. Minister of Public Works and Government Services Canada, Ottawa, ON.

Environment Canada, Meteorological Service of Canada, 2001b. Wind Chill Calculation Chart. http://www.msc.ec.gc.ca/ windchill/Chart_chill_e.jpg (accessed Oct 24, 2001).

Environment Canada, Meteorological Service of Canada, 2002. Canadian Daily Climate Data on CD-ROM - Western Canada. Climate and Water Products Division, Downsview, ON.

Environment Canada, Meteorological Service of Canada, 2004. Climate Data Online/Climate Normals and Averages. http://www.climate.weatheroffice.ec.gc.ca/climate_normals/index_e.html (accessed 2004).

Environment Canada, Meteorological Service of Canada, 2005. Province-Territoroy Weather Winners - Saskatchewan Weather Honours. http://www.on.ec.gc.ca/weather/winners/provincial-territorial-home-e.html (accessed August 2005).

Environment Canada, Meteorological Service of Canada, 2006a. Climate Data Online/Monthly Data Report for 2005 for Saskatoon A. http://www.climate.weatheroffice.ec.gc.ca/climateData/monthlydata_e.html?timeframe=3...(accessed January 13, 2006).

Environment Canada, Meteorological Service of Canada, 2006b. Climate Data Online/Monthly Data Report for 2005 for Saskatoon Kernen Farm CS. http://www.climate.weatheroffice.ec.gc.ca/climateData/monthlydata_e.html?timeframe =3...(accessed January 13, 2006).

Flysak, L, 2005. Personal Communication. July, 2005. Saskatchewan Environmental Services Centre, Saskatoon, SK.
Gibson, C., 2003. The Cat Care Handbook. Strathearn Books Limited, Toronto, ON.
Goble, R. J., 2002. Volcanoes. In: Introduction to Geology/Physical Geology. http://www.class.unl.edu/geol100/ Review2.html (accessed June, 2002)

Heidorn, K. 1998. The Weather Legacy of Admiral Sir Francis Beaufort In: Weather People and History. http:// irishculture.about.com/gi/dynamic/offsite.htm?site=http://www.islandnet.com/\%7Esee/weather/history/ beaufort.htm (accessed July 30, 2001).

Heidorn, K. 2001. The Elders Speak: Quotes about Winter In: The Weather Doctor. http://www.islandnet.com/~see/weather/ arts/winwords.htm (accessed Jan. 4, 2006).

Heidorn, K. 2003. The Weather Doctor's Diary: September. http://www.islandnet.com/~see/weather/almanac/diarysep.htm (accessed Oct. 5, 2005)

Lutgens, F. K. and E.J. Tarbuck, 1992. The Atmosphere: An Introduction to Meteorology, 5th Ed.. Prentice Hall, New Jersey.
National Research Council of Canada, Herzberg Institute of Astrophysics, n.d. Sunrise - Sunset Tables for Saskatoon http://www.hia-iha.nrc-cnrc.ca/sunrise_e.html (accessed January 2005, 2006).

Olm, O., 2001. Personal Communication. September 17, 2001. Saskatchewan Research Council, Saskatoon, SK.
Phillips, D.W. 1988. 1989 Canadian Weather Trivia Calendar. Minister of Supply and Services Canada, Ottawa, ON.
Phillips, D.W. 1998. Blame it on the Weather. Key Porter Books Limited, Toronto, ON
Phillips, D.W. 2004. 2005 Canadian Weather Trivia Calendar. Fifth House Ltd., Calgary, AB.
Thornthwaite, C.W. and J. R. Mather, 1955. The Water Balance. Publications in Climatology Vol. 8, No.1. Drexel Institute of Technology, Laboratory of Climatology, Centerton, New Jersey.
U.S. Geological Survey. Cascades Volcano Observatory, n.d. Deadliest Volcanic Eruptions Since 1500 A.D. http:// vulcan.wr.usgs.gov (accessed March 27, 2002)

World Meteorological Organization (WMO). 1988. Technical Regulations: General Meteorological Standards and Recommended Practices, 1988 ed., Suppl. No. 2 (IV. 1996), WMO - No. 49. Geneva, Switzerland.

