technology is our business



## CLIMATOLOGICAL REFERENCE STATION

# ANNUAL SUMMARY 2002 

C. Beaulieu
V. Wittrock

Environment/Minerals Division Climatology/Aquatic Ecology Section

## ACKNOWLEDGEMENTS

The 2002 data was compiled and recorded by Carol Beaulieu with assistance from Virginia Wittrock. Charlene Hudym and Leanne Crone assisted in the archiving of data. Miss Beaulieu maintained the site while instrument maintenance was carried out by the Instrumentation and Electronics Section of the Saskatchewan Research Council (SRC). Elaine Wheaton and Virginia Wittrock assisted with the proofreading and editing. Consultations with Larry Flysak and Don Rybak of the Meteorological Service of Canada (MSC), Saskatoon, SK, were most helpful in verifying and comparing data. Although every caution has been taken to ensure the accuracy of data and information presented, errors may occur. If errors are noticed, we would appreciate being informed so they can be corrected.

Information and data contained in this report shall not be published, copied, placed in a retrieval system or distributed whole or in part without prior written consent of the Saskatchewan Research Council. All references made to this report shall be acknowledged.

Enquiries concerning the SRC Climatological Reference Station (CRS), its data, measurement programs and publications, or becoming a sponsor are most welcome. For further information contact:

| Elaine Wheaton | Virginia Wittrock | Carol Beaulieu | Climatology Section |
| :---: | :---: | :---: | :---: |
| Senior Research Scientist | Research Scientist | Research Technologist | Fax 306-933-7817 |
| 306-933-8179 | $306-933-8122$ | $306-933-8182$ | Saskatchewan Research Council |
| e-mail wheaton@src.sk.ca | e-mail wittrock@src.sk.ca | e-mail beaulieu@src.sk.ca | Web Site Home Page |
|  |  |  | http://www.src.sk.ca |

## SASKATCHEWAN RESEARCH COUNCIL

 CLIMATE REFERENCE STATION SPONSORS, 2002


Ducks Unlimited Canada
CANADA'S CONSERVATION COMPANY

Agriculture and Agri-Food Canada


Agriculture et
Agroalimentaire Canada
4. SaskPower

## COVER ART

Untitled
by Mary Moody, Aquatic Research Scientist, SRC
From the collection of C.R. Beaulieu

## TABLE OF CONTENTS

Acknowledgements ..... ii
Climate Reference Station sponsors, 2002 ..... ii
Table of contents ..... iii
Climate Reference Station history ..... 1
What is the Climate Reference Station? ..... 2
Climate Reference Station outreach 2002 ..... 2
Summary for 2002 ..... 3
Weather events summary, 2002 ..... 4
New 2002 daily temperature and precipitation records ..... 4
Cold spell ..... 4
Hot spell ..... 4
Greatest extreme precipitation events (mm) ..... 4
Climatic element: dryness ..... 5
Ranking of driest months for 2002 ..... 5
Time and duration of periods with 15 days or more with no measurable precipitation ..... 5
Dates of frost-free season ..... 5
Monthly average temperatures, 2002 ..... 6
SRC Climate Reference Station temperature record for 2002 ..... 7
SRC Climate Reference Station precipitation record for 2002 ..... 8
Monthly precipitation, 2002 ..... 9
Monthly heating and cooling degree-days, 2002 ..... 10
Monthly growing degree-days, 2002 ..... 11
Average annual temperature time series for Saskatoon 'A'. 1900-2002 ..... 12
Average annual temperature time series for CRS, 1964-2002 ..... 12
Total annual precipitation time series for Saskatoon 'A', 1900-2002 ..... 13
Total annual precipitation time series for CRS, 1964-2002 ..... 13
Monthly bright sunshine, 2002 ..... 14
Sunrise and sunset at Saskatoon, 20022 ..... 15
Monthly global and diffuse solar radiation, 2002 ..... 16
Daily global and diffuse solar radiation, 2002 ..... 17
Monthly average soil temperatures at 0900 hrs, 2002 ..... 18
Soil temperatures at 0900h, 5 to 20 cm ..... 18
Soil temperatures at 0900h, 50 cm to 300 cm ..... 19
Soil temperatures at $1600 \mathrm{~h}, 5 \mathrm{~cm}$ to 20 cm ..... 19
Monthly average wind speed and extreme gusts, 2002 ..... 20
Extreme winds for 2002 ..... 21
Windchill calculation chart ..... 22
Annual weather summary ..... 23
Monthly weather summaries ..... 24
Instruments used at Saskatoon SRC CRS and glossary of terms ..... 36
Bibliography. ..... 39

Grade 4 Warman Elementary School Tour
photo credit: Ms Marg Epp


## CLIMATE REFERENCE STATION HISTORY



Meteorological observations were first taken at or near Saskatoon by the Royal Northwest Mounted Police in 1889 with temperature only being recorded. There is some disagreement in the early records as to the exact location of the weather observing point, but the majority of the evidence indicates $52^{\circ} 15^{\prime} \mathrm{N}, 106^{\circ} 20^{\prime} \mathrm{W}$, elevation 480 m above sea level as the most probable location. This would place it at Clark's Crossing on the South Saskatchewan River, approximately 16 km northeast of the centre of the City of Saskatoon. There was a settlement at Clark's Crossing at that time as well as 10 to 15 families on either side of the river where Saskatoon is now located.

Little is known about the very early observers; however, the records do show that Major T.H. Keenan took observations from March 1892 until March 1895, and Mr. George Will was the observer from January 1897 until April 1897. It is thought that T. H. Copeland was involved in the observational program from 1895 to May 1, 1901, at which time it was taken over by Mr. Eby, Sr. Mr. Eby, Sr. recorded the observations until his death in 1921, at which time his daughter, Miss E.S. Eby, continued to record the observations. Her brother, Mr. J.M. Eby, recorded the observations beginning in April 1931 until the station was closed October 31, 1942. The Eby station recorded temperature, precipitation and weather notes on fog, thunderstorms, winds and any unusual weather phenomena. Reports were made twice daily, morning and evening.

In 1916, a climatological station was established by the Physics Department of the University of Saskatchewan and continuous observations were kept twice daily until January 15, 1965. The longtime observer was Mr. Sidney Cox. The Saskatchewan Research Council took over the programme in the fall of 1963 at the newly established Climatological Reference Station at latitude $52^{\circ} 09^{\prime} \mathrm{N}$, longitude $106^{\circ} 36^{\prime} \mathrm{W}$ and elevation 497 m asl ${ }^{1}$. The first observer was Terry Beck followed three years later by Orville Olm. ${ }^{2}$ In 1967, Joe Calvert became the primary observer until his retirement in 1983. Ray Begrand succeeded Mr. Calvert until 1988 when Virginia Wittrock became the primary observer. Since 1992, the primary observer has been Carol Beaulieu assisted by Virginia Wittrock, Leanne Crone and Charlene Hudym.

In the summer of 1992, the CRS began to be converted to an automated system of data collection with the installation of a Campbell Scientific datalogger and automatic sensors. Elements presently recorded at the site are temperature, precipitation, wind, solar radiation, relative humidity, barometric pressure, soil temperature and snow-on-theground (manual recordings). Temperature, precipitation and radiation data are submitted to Environment Canada.

[^0]
## WHAT IS THE CLIMATE REFERENCE STATION?

The Saskatchewan Research Council's Climate Reference Station (SRC CRS) at Saskatoon is classified as a principal climatological station with supplementary climatological observations. A reference climatological station's data are intended for the purpose of determining climatic trends. This requires long periods (not less than thirty years) of homogeneous records, where man-made environmental changes have been or are expected to remain at a minimum. Ideally the records should be of sufficient length to enable the identification of secular changes of climate ${ }^{2}$. At our station, hourly readings are taken of elements which include temperature, precipitation amount, humidity, wind, and atmospheric pressure. Our supplemental observations include rate of rainfall, soil temperature, bright sunshine and solar radiation. High quality and consistent climatological observations are maintained providing data sets to meet the current concerns of the effects of climatic change and increased variability.

## Purpose and Benefits

The purpose of the SRC CRS is to provide a record of the observed meteorological elements so that the climate of the area and its changes can be accurately documented and described. Climatological data have assumed new importance as a result of social and environmental issues in which climate is a dominant factor. Climatological information assists in realizing new technological opportunities and social changes. It is necessary and valuable for use in areas such as agriculture, forestry, land use and facility placement, water and energy resources, health and comfort.

The CRS also allows us to:

- evaluate long term climate trends - early warning system for increased frequencies of extreme events such as drought, floods, etc.;
- determine the impacts of climate events on society, economy, health, and ecosystems - e.g. intense rainfall causing flooding and property damage and heat stress with its implications for health;
- do value-added research;
- be part of regional, national and global networks in an important agricultural and ecological area;
- facilitate development of additional programs - e.g. air quality, biodiversity, and climate change monitoring;
- have roles in various programs within SRC including spray drift work, The Boreal Ecosystem Atmosphere Study (BOREAS), and collaborative research with the Western College of Veterinary Medicine and the College of Agriculture, University of Saskatchewan, for example; and - provide climate data to governments, universities, insurance agencies, lawyers, agricultural sectors, chemical companies, schools, building science, construction firms, media, transportation studies, accident studies, wildlife studies and interested individuals.

The goals of the Climate Reference Station are first, to maintain the high quality of data gathered over its more than thirty-eight years of existence at its current location and, second, to continue to monitor a large variety of elements. These various elements combined with the long-term collection period as well as the stable location allow CRS to be a very valuable climate information collection station.

## CLIMATE REFERENCE STATION OUTREACH 2002

The Climate Reference Station (CRS) staff were active in outreach activities in 2002. Presentations on 'Weather Instruments and How They Work' were conducted at the Climate Reference Station and as well as in classes. The presentations were well received by students and staff with positive post-presentation feedback. Approximately 254 children from 9 urban and rural schools, grades K to 7 participated in the demonstrations. With the help of enthusiastic volunteers, students received hands-on experience with instruments used to measure temperature, precipitation, wind and solar radiation.

## SUMMARY FOR 2002

Data concerning temperature, precipitation, wind speed and direction, bright sunshine, solar radiation, and soil temperature, recorded at the Saskatchewan Research Council (SRC) Climatological Reference Station (CRS) ( $52^{\circ} 09^{\prime} \mathrm{N}, 106^{\circ} 36^{\prime} \mathrm{W}, 497 \mathrm{~m}$ asl), are presented for the year 2002 and compared with the long-term (circa 19002001) and standard-period (1971-2000) records.

Drought conditions continued into 2002 with late winter and spring moisture well below normal. May received only a token 0.2 mm of precipitation. It was not until July, after 22 months of below normal precipitation, that relief finally arrived. Above normal precipitation amounts continued during August and September. Unfortunately, October, November and December saw the return to below normal precipitation conditions. Even with nine months of below normal monthly precipitation, the annual total was only $8.1 \%$ below normal due to twice normal precipitation amounts in August and September. Six daily precipitation records were set during July, August and September. For a 32.4 mm deluge on $30^{\text {th }}$, September had the greatest daily total while August had the greatest monthly total of 81.8 mm . 2002 had a 35 day period from May 2 to June 5 when no measurable precipitation occurred. This extreme dryness is further illustrated by May having only $0.5 \%$ of normal precipitation. May ranked as the $16^{\text {th }}$ driest year since 1964 .

January and February temperatures soared above normal then plunged into the deep freeze for March. They took all spring to recover but by June were above monthly averages. The mean monthly temperatures remained above average for the rest of the year except for August and October. December was notable in its $6.2^{\circ} \mathrm{C}$ above normal mean temperature. Nineteen hot spell days of above $30^{\circ} \mathrm{C}$ were recorded with the longest spell occurring from July 11 to 15 ; a short pause on the $16^{\text {th }}$ with a temperature of $29.2^{\circ} \mathrm{C}$ then concluding with two more hot days. The hottest days occurred on June 27 and 28 with temperatures over $37^{\circ} \mathrm{C}$. Fourteen daily maximum temperatures were set of which six occurred in January, February and November. There were also 15 daily minimum temperatures broken, 10 of which occurred in the spring months of March, April and May. Minimum temperatures dipped to new record lows on the August 2 and 4. Although CRS did not record frost, the Saskatoon Airport came very close with a minimum temperature of $0.4^{\circ} \mathrm{C}$ on August $2 .{ }^{1} 2002$ ranked as the $15^{\text {th }}$ warmest year since 1964.

Monthly growing degree-days were above average for the months of June to September. With 122 days, 2002 ranked $13^{\text {th }}$ for its frost-free period. The frost-free season began on May 23 (five days earlier than the 1971-2000 average), and ended on September 23 (nine days later than the 1971-2000 average). Growing degree-days for the frost-free period were 1572.2; for the year there were 1699.9 growing degree-days, just slightly above normal. Heating degree-days were below normal for late winter, early summer and early winter. Cooling degree-days were more than 100 higher than normal due mainly to June and July hot spells.

The monthly bright sunshine values for 2002 ended the year with a cumulative total just slightly above normal. Of the 4482.8 hours of possible bright sunshine, the station recorded 2313.6 hours or $51.6 \%$. This is reflected in the global radiation value of $4857.0 \mathrm{MJ} / \mathrm{m}^{2}$ being slightly higher than normal.

January was the calmest month with no 'Near Gale' winds recorded. May was the windiest month with 13 days of wind speeds greater than $51 \mathrm{~km} / \mathrm{h}$. It was the only month to record a 'Strong Gale' wind of $78.2 \mathrm{~km} / \mathrm{h}$ from the west on the $29^{\mathrm{th}}$. All other months reported average or lower than average wind speeds. Extreme daily maximum winds of over $51 \mathrm{~km} / \mathrm{h}$ occurred 53 times. The winds of May caused soil drifting in the Saskatoon area. ${ }^{2}$

[^1]Weather Events Summary, 2002

| NEW 2002 DAILY TEMPERATURE AND PRECIPITATION RECORDS |  |  |  |
| :---: | :---: | :---: | :---: |
| TYPE | DAY | NEW RECORD | OLD RECORD/year |
| Maximum Daily Temperature ${ }^{\circ} \mathrm{C}$ | Jan 07 | 6.1 | 4.0 / 1990 |
|  | Jan 08 | 6.8 | 6.5 / 1986 |
|  | Feb 11 | 3.4 | 2.9 / 1991 |
|  | Feb 15 | 5.2 | 4.4 / 1971 |
|  | Feb 17 | 7.9 | 4.0 / 1988 |
|  | Jun 27 | 37.1 | 31.1 / 1964 |
|  | Jun 28 | 37.2 | 31.7 / 1966 \& 1978 |
|  | Jul 13 | 36.3 | 33.3 / 1964 |
|  | Jul 14 | 37.0 | 34.9 / 2000 |
|  | Jul 17 | 33.9 | 33.9 / 1967 |
|  | Jul 18 | 36.1 | 33.3 / 1967 |
|  | Jul 25 | 33.8 | 32.0 / 1998 |
|  | Sep 16 | 31.3 | 31.1 / 1979 |
|  | Nov 28 | 9.6 | $5.0 / 1987$ |
| Minimum Daily Temperature ${ }^{\circ} \mathrm{C}$ | Mar 11 | -25.0 | -23.0/1998 |
|  | Mar 20 | -27.6 | -25.6/1974 |
|  | Apr 24 | -7.2 | -5.0/1967 |
|  | Apr 25 | -10.5 | -8.5/1994 |
|  | Apr 27 | -7.1 | -4.5/1989 |
|  | May 01 | -7.0 | -4.8/1998 |
|  | May 04 | -6.7 | -5.0/1967 |
|  | May 05 | -9.4 | -6.7/1976 |
|  | May 07 | -7.9 | -6.0/1980 |
|  | May 23 | -3.5 | -1.0/1981 |
|  | Aug 02 | 2.6 | 3.3/1978 |
|  | Aug 04 | 2.6 | 6.1/1975 |
|  | Sep 27 | -7.1 | -3.5/1984 |
|  | Oct 19 | -7.4 | -6.1/ 1968 \& 1969 |
|  | Oct 20 | -8.9 | -8.3/1976 |
| Daily Precipitation mm | Jun 11 | 12.8 | 10.7 / 1972 |
|  | Jul 09 | 26.6 | 13.2 / 1986 |
|  | Aug 11 | 18.0 | 5.8 / 1982 |
|  | Aug 30 | 7.2 | 6.2 / 1982 |
|  | Sep 07 | 9.6 | 7.7 / 1984 |
|  | Sep 22 | 2.4 | 1.3 / 1977 |
|  | Sept 30 | 32.4 | 4.6 / 1964 |
|  | Dec 29 | 9.5 | 3.8 / 1992 |


| COLD SPELL <br> (less than or equal to $-30^{\circ} \mathrm{C}$ ) |  |  |
| :---: | :---: | :---: |
| MONTH | DAY | TEMPERATURE ${ }^{\circ} \mathrm{C}$ |
| January | 23 | -31.0 |
|  | 28 | -31.9 |
|  | 30 | -30.4 |
|  | 31 | -32.2 |
| Extreme | Jan 31 | -32.2 |


| HOT SPELL <br> (greater than or equal to $30^{\circ} \mathrm{C}$ ) |  |  |
| :---: | :---: | :---: |
| MONTH | DAY | TEMPERATURE ${ }^{\circ} \mathrm{C}$ |
| June | 26 | 34.4 |
|  | 27 | 37.1 |
|  | 28 | 37.2 |
| July | 4 | 31.2 |
|  | 6 | 30.5 |
|  | 11 | 30.7 |
|  | 12 | 34.9 |
|  | 13 | 36.3 |
|  | 14 | 37.0 |
|  | 15 | 30.9 |
|  | 17 | 33.9 |
|  | 18 | 36.1 |
|  | 24 | 31.4 |
|  | 25 | 33.8 |
|  | 26 | 30.1 |
| August | 24 | 32.8 |
|  | 25 | 31.1 |
|  | 28 | 30.3 |
| Sept | 16 | 31.3 |
| Extreme | June 28 | 37.2 |


| GREATEST EXTREME PRECIPITATION EVENTS (mm)* |  |  |
| :--- | :---: | :---: |
| PERIOD | DATE | AMOUNT |
| 0.5 hour | July 26 | 12.6 |
| 0.5 hour | July 17 | 8.6 |
| 1 hour | July 17 | 15.8 |
| 1 hour | July 26 | 12.8 |
| 2 hours | July 17 | 20.6 |
| 2 hours | June 17 | 15.2 |
| 24 hours | Sept 30 | 32.4 |
| 24 hours | July 9 | 26.6 |
| ${\text { *recorded by tipping bucket June } I^{\text {st }} \text { to September } 30^{\text {th }}}^{2}$ |  |  |

## Climatic Element: Dryness

| RANKING OF DRIEST MONTHS FOR 2002 |  |  |  |  |  |  |  |  |  |
| ---: | :--- | ---: | ---: | :--- | ---: | :--- | :--- | :--- | :--- |
| Driest Month <br> by \% of Normal |  | Rank | Driest Month by <br> Precipitation Amount <br> (mm) | Driest Month <br> by \% of Normal | Rank | Driest Month by <br> Precipitation Amount <br> (mm) |  |  |  |
| May | 0.5 | 1 | 0.2 | May | October | 66.5 | 7 | 12.0 | April |
| January | 15.9 | 2 | 2.9 | January | December | 76.0 | 8 | 13.9 | December |
| February | 24.8 | 3 | 3.3 | February | June | 91.1 | 9 | 54.2 | June |
| November | 25.0 | 4 | 3.7 | November | July | 122.1 | 10 | 58.2 | September |
| April | 50.8 | 5 | 8.1 | March | September | 198.0 | 11 | 70.8 | July |
| March | 61.4 | 6 | 10.9 | October | August | 226.0 | 12 | 81.8 | August |


| Year | Period | Duration (days) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | Jan 13-Feb 09 | 28 | 1974 | Apr 02 - Apr 18 | 17 | 1994 | Apr 24 - May 11 | 18 | 1964 | Mar 22 - Apr 21 | 31 |
|  | May 28 - Jun 11 | 15 |  | Oct 14 - Nov 07 | 25 |  | Sep 05 - Sep 19 | 15 |  | Oct 04 - Oct 20 | 17 |
|  | Sep 16 - Oct 25 | 40 |  | Nov 14 - Dec 11 | 28 |  | Nov $03-$ Nov 20 | 18 |  | Oct 27 - Nov 12 | 17 |
|  | Nov 17 - Dec 04 | 18 | 1967 | May 02 - May 20 | 19 |  | Dec 13 - Dec 27 | 15 | 1981 | Feb 15 - Mar 05 | 19 |
| 1976 | Mar 26 - Apr 15 | 21 |  | May 26 - Jun 09 | 15 | 2001 | Jan 16 - Jun 30 | 15 |  | May 10 - May 27 | 18 |
|  | Apr 24 - May 10 | 17 |  | Aug 15 - Sep 01 | 18 |  | May 04 - May 18 | 15 |  | Sep 03-Sep 19 | 17 |
|  | Oct 12 - Nov 28 | 48 |  | Oct 07 - Oct 23 | 17 |  | Aug 15-Sep 04 | 21 |  | Aug 09-Aug 12 | 15 |
| 1986 | Jan 02 - Jan 16 | 15 | 1988 | Apr 07 - Apr 22 | 16 |  | Nov $10-$ Nov 24 | 15 | 1979 | Oct $03-$ Oct 17 | 15 |
|  | Aug 10 - Aug 29 | 20 |  | Jly 16 - Jly 30 | 15 | 2002 | Jan 03 - Jan 18 | 16 |  | Dec 15-Dec 31 | 17 |
|  | Oct 08 - Oct 27 | 20 |  | Sep 28 - Oct 13 | 16 |  | May 02 - Jun 05 | 35 | 1984 | Jan 27 - Feb 25 | 30 |
|  | Dec 11 - Dec 29 | 19 |  | Nov 18 - Dec 06 | 19 |  | Nov 17 - Dec 01 | 15 |  | Sep 26 - Oct 12 | 17 |

Dates of Frost-free Season

| YEAR | DATE <br> OF LAST <br> SPRING <br> FROST | DATE OF <br> FIRST <br> FALL <br> FROST | LENGTH OF <br> SEASON <br> (days) |
| :---: | :---: | :---: | :---: |
| 1964 | May 31 | Sept 26 | 117 |
| 1965 | May 27 | Sept 05 | 100 |
| 1966 | May 19 | Sept 13 | 116 |
| 1967 | Jun 06 | Sept 23 | 108 |
| 1968 | May 19 | Sept 25 | 128 |
| 1969 | Jun 14 | Sept 15 | 92 |
| 1970 | May 19 | Sept 12 | 115 |
| 1971 | May 18 | Sept 20 | 124 |
| 1972 | May-08 | Sept 04 | 118 |
| 1973 | May 06 | Sept 14 | 120 |
| 1974 | May 25 | Sept 02 | 99 |
| 1975 | May 21 | Sept 11 | 112 |
| 1976 | May 06 | Aug 28 | 113 |
| 1977 | May 01 | Aug 31 | 121 |


|  | DATE <br> OF LAST <br> SPRING <br> FROST | DATE OF <br> FIRST <br> FALL <br> FROST | LENGTH OF <br> SEASON <br> (days) |
| :---: | :---: | :---: | :---: |
| 1978 | May 30 | Sept 30 | 112 |
| 1979 | May 30 | Aug 13 | 74 |
| 1980 | May 14 | Aug 26 | 103 |
| 1981 | May 24 | Sept 03 | 101 |
| 1982 | May 29 | Aug 27 | 89 |
| 1983 | May 24 | Sept 13 | 111 |
| 1984 | May 24 | Aug 31 | 98 |
| 1985 | Jun 04 | Sept 06 | 93 |
| 1986 | May 17 | Sept 06 | 111 |
| 1987 | May 21 | Oct 06 | 137 |
| 1988 | May 02 | Sept 19 | 139 |
| 1989 | May 28 | Sept 10 | 104 |
| 1990 | May 13 | Sept 21 | 130 |
| 1991 | May 27 | Sept 18 | 113 |


| YEAR | DATE <br> OF LAST <br> SPRING <br> FROST | DATE OF <br> FIRST <br> FALL <br> FROST | LENGTH OF <br> SEASON <br> (days) |
| :---: | :---: | :---: | :---: |
| 1992 | May 23 | Sept 14 | 113 |
| 1993 | May 17 | Sept 14 | 119 |
| 1994 | May 09 | Oct 04 | 147 |
| 1995 | May 22 | Sept 18 | 118 |
| 1996 | May 12 | Sept 29 | 139 |
| 1997 | May 14 | Oct 05 | 143 |
| 1998 | May 13 | Sept 30 | 139 |
| 1999 | May 09 | Sept 27 | 140 |
| 2000 | May 17 | Sept 23 | 128 |
| 2001 | May 10 | Oct 04 | 146 |
| 2002 | May 23 | Sept 23 | 122 |
| 1971 | May 18 | Sept 14 | 116.9 |
| Normal | Sept 11 | 110.6 |  |
| 1961 <br> -1990 <br> Normal | May 21 | Sen |  |

Monthly Average Temperatures, 2002

| MONTH | AVERAGE MAXIMUM TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ ) |  | AVERAGE MINIMUM TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ ) |  | AVERAGE TEMPERATURE ( $\left.{ }^{\circ} \mathrm{C}\right)$ |  | EXTREME VALUES FOR TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2002 | Normal | 2002 | Normal | 2002 | Normal | Maximum/Date | Minimum/Date |
| January | -9.2 | -11.6 | -17.6 | -21.8 | -13.4 | -16.7 | 6.8/08 | -32.2/31 |
| February | -2.1 | -7.7 | -12.2 | -17.6 | -7.2 | -12.7 | 7.9/17 | -27.4/28 |
| March | -6.7 | -0.7 | -18.0 | -10.5 | -12.4 | -5.6 | 6.6/28 | -27.6/20 |
| April | 6.4 | 10.7 | -6.3 | -1.7 | 0.1 | 4.5 | 19.3/13 | -19.1/03 |
| May | 17.7 | 18.6 | 1.4 | 4.7 | 9.6 | 11.6 | 29.0/28\&29 | -9.4/05 |
| June | 24.6 | 22.6 | 11.4 | 9.5 | 18.1 | 16.0 | 37.2/28 | 5.4/07 |
| July | 27.8 | 24.8 | 14.0 | 11.5 | 20.9 | 18.2 | 37.0/14 | 6.8/03 |
| August | 23.4 | 24.6 | 11.2 | 10.4 | 17.3 | 17.5 | 32.8/24 | 2.6/02\&04 |
| September | 18.4 | 18.1 | 6.2 | 4.9 | 12.4 | 11.6 | 31.3/16 | -7.1/27 |
| October | 4.0 | 10.8 | -4.7 | -1.3 | -0.3 | 4.8 | 17.3/09 | -13.5/29 |
| November | 0.9 | -1.4 | -8.3 | -10.3 | -3.7 | -5.9 | 10.1/20 | -15.7/24 |
| December | -3.5 | -9.0 | -11.9 | -18.6 | -7.7 | -13.9 | 5.5/13 | -27.2/03 |
| Average | 8.5 | 8.3 | -2.9 | -3.4 | 2.8 | 2.5 |  |  |



SRC Climate Reference Station Temperature Record for 2002



Monthly Precipitation, 2002

| MONTH | PRECIPITATION (mm) |  |  | CUMULATIVE PRECIPITATION (mm) |  |  | EXTREME VALUE (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2002 | Normal | \% | 2002 | Normal | \% | Value/Date |
| January | 2.9 | 18.2 | 15.9 | 2.9 | 18.2 | 15.9 | 1.1/02 |
| February | 3.3 | 13.3 | 24.8 | 6.2 | 31.5 | 19.7 | 2.8/19 |
| March | 8.1 | 16.2 | 50.0 | 14.3 | 47.7 | 30.0 | 1.2/29 |
| April | 12.0 | 23.6 | 50.8 | 26.3 | 71.3 | 36.9 | 5.0/23 |
| May | 0.2 | 44.3 | 0.5 | 26.5 | 115.6 | 22.9 | 0.2/01 |
| June | 54.2 | 59.5 | 91.1 | 80.7 | 175.1 | 46.1 | 16.0/17 |
| July | 70.8 | 58.0 | 122.1 | 151.5 | 233.1 | 65.0 | 26.6/09 |
| August | 81.8 | 36.2 | 226.0 | 233.3 | 269.3 | 86.6 | 18.0/11 |
| September | 58.2 | 29.4 | 198.0 | 291.5 | 298.7 | 97.6 | 32.4/30 |
| October | 10.9 | 16.4 | 66.5 | 302.4 | 315.1 | 96.0 | 3.0/17 |
| November | 3.7 | 14.8 | 25.0 | 306.1 | 329.9 | 92.8 | 1.4/08 |
| December | 13.9 | 18.3 | 76.0 | 320.0 | 348.2 | 91.9 | 9.5/29 |
| Total | 320.0 | 348.2 | 91.9 |  |  |  |  |



Monthly Heating and Cooling Degree-days, 2002

| MONTH | HEATING DEGREE-DAYSBase $18^{\circ} \mathrm{C}$ |  | CUMULATIVE HEATING DEGREE-DAYS Base $18^{\circ} \mathrm{C}$ |  | COOLING DEGREE-DAYSBase $18^{\circ} \mathrm{C}$ |  | CUMULATIVE COOLING DEGREE-DAYS Base $18^{\circ} \mathrm{C}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2002 | Normal | 2002 | Normal | 2002 | Normal | 2002 | Normal |
| January | 973.3 | 1076.5 | 973.3 | 1076.5 | 0.0 | 0.0 | 0.0 | 0.0 |
| February | 705.1 | 866.3 | 1678.4 | 1942.8 | 0.0 | 0.0 | 0.0 | 0.0 |
| March | 942.5 | 732.1 | 2620.9 | 2674.9 | 0.0 | 0.0 | 0.0 | 0.0 |
| April | 537.4 | 405.0 | 3158.3 | 3079.9 | 0.0 | 0.3 | 0.0 | 0.3 |
| May | 267.2 | 204.4 | 3425.5 | 3284.3 | 5.9 | 7.4 | 5.9 | 7.7 |
| June | 58.4 | 82.8 | 3483.9 | 3367.1 | 60.1 | 22.3 | 66.0 | 30.0 |
| July | 19.0 | 35.3 | 3502.9 | 3402.4 | 109.9 | 40.7 | 175.9 | 70.7 |
| August | 65.8 | 57.7 | 3568.7 | 3460.1 | 45.6 | 42.5 | 221.5 | 113.2 |
| September | 175.5 | 198.9 | 3744.2 | 3659.0 | 6.4 | 5.8 | 227.9 | 119.0 |
| October | 568.1 | 410.2 | 4312.3 | 4069.2 | 0.0 | 0.1 | 227.9 | 119.1 |
| November | 650.8 | 715.8 | 4963.1 | 4785.0 | 0.0 | 0.0 | 227.9 | 119.1 |
| December | 797.8 | 987.7 | 5760.9 | 5772.7 | 0.0 | 0.0 | 227.9 | 119.1 |
| Total | 5760.9 | 5772.7 | 41192.4 | 5772.7 | 227.9 | 119.1 | 1380.9 | 119.1 |



Monthly Growing Degree-days, 2002

| MONTH | GROWING DEGREE-DAYS Base $5^{\circ} \mathrm{C}$ |  | CUMULATIVE GROWING DEGREE-DAYS Base $5^{\circ} \mathrm{C}$ |  | FROST-FREE GROWING DEGREE-DAYS Base $5^{\circ} \mathrm{C}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2002 | Normal | 2002 | Normal | 2002 | Cumulative |
| January | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
| February | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
| March | 0.0 | 2.3 | 0.0 | 2.3 |  |  |
| April | 22.2 | 61.0 | 22.2 | 63.3 |  |  |
| May | 170.7 | 211.6 | 192.9 | 274.9 | 88.8 | 88.8 |
| June | 391.7 | 331.5 | 584.6 | 606.4 | 391.7 | 480.5 |
| July | 493.9 | 408.4 | 1078.5 | 1014.8 | 493.9 | 974.4 |
| August | 382.8 | 387.8 | 1461.3 | 1402.6 | 382.8 | 1357.2 |
| September | 227.0 | 203.5 | 1688.3 | 1606.1 | 215.0 | 1572.2 |
| October | 11.5 | 63.7 | 1699.8 | 1669.8 |  |  |
| November | 0.1 | 2.6 | 1699.9 | 1672.4 |  |  |
| December | 0.0 | 0.1 | 1699.9 | 1672.5 |  |  |
| Total | 1699.9 | 1672.5 |  |  | 1572.2 |  |



Average Annual Temperature Time Series for Saskatoon 'A'. 1900-2002

data source: Environment Canada, 2002a, 2002b 2003

Average Annual Temperature Time Series for CRS, 1964-2002


Total Annual Precipitation Time Series for Saskatoon 'A', 1900-2002

data source: Environment Canada, 2002a, 2002b, 2003 Total Yearly Precipitation

Total Annual Precipitation Time Series for CRS, 1964-2002


Monthly Bright Sunshine, 2002

| MONTH | BRIGHT SUNSHINE (hours) |  |  |  | CUMULATIVE BRIGHT SUNSHINE (hours) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2002 | Normal | Possible* | \% of Possible | 2002 | Normal |
| January | 107.5 | 103.3 | 259.2 | 41.5 | 107.5 | 103.3 |
| February | 157.4 | 132.3 | 278.8 | 56.5 | 264.9 | 235.6 |
| March | 200.4 | 175.2 | 369.3 | 54.3 | 465.3 | 410.8 |
| April | 223.2 | 225.2 | 418.4 | 53.3 | 688.5 | 636.0 |
| May | 324.3 | 267.1 | 487.5 | 66.5 | 1012.8 | 903.1 |
| June | 246.9 | 277.2 | 500.1 | 49.4 | 1259.7 | 1180.3 |
| July** | 314.1 | 305.7 | 501.9 | 62.6 | 1573.8 | 1486.0 |
| August | 221.9 | 280.8 | 452.6 | 49.0 | 1795.7 | 1766.8 |
| September | 206.2 | 186.0 | 379.2 | 54.4 | 2002.0 | 1952.8 |
| October | 127.2 | 157.9 | 329.3 | 38.6 | 2128.9 | 2110.7 |
| November | 95.4 | 98.0 | 264.1 | 36.1 | 2224.3 | 2208.7 |
| December | 89.3 | 85.4 | 242.4 | 36.8 | 2313.6 | 2294.1 |
| Total | 2313.6 | 2294.1 | 4482.8 | 51.6 |  |  |

* Possible Bright Sunshine hours calculated from National Research Council of Canada, Hertzberg Institute of Astrophysics sunrise/set table for 2002
**July 3 , re-calibrated instrument installed with maximum of .6 h loss. July 4 datalogger down for 1 hour; minimum loss of data due to cloudy sky


Sunrise ${ }^{1}$ and Sunset ${ }^{1}$ at Saskatoon, 2002 ${ }^{2}$
(local time in hours and minutes)

| SUNRISE AND SUNSET AT SASKATOON SK. 2002 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2002 | JANUARY |  | FEBRUARY |  | MARCH |  | APRIL |  | MAY |  | JUNE |  | JULY |  | AUGUST |  | SEPTEMBER |  | October |  | november |  | december |  |
| Date | Rise | Set |
| 1 | 9:15 | 17:05 | 8:47 | 17:54 | 7:52 | 18:46 | 6:41 | 19:41 | 5:36 | 20:32 | 4:52 | 21:18 | 4:50 | 21:30 | 5:28 | 20:57 | 6:18 | 19:54 | 7:07 | 18:44 | 8:02 | 17:38 | 8:53 | 16:58 |
| 2 | 9:15 | 17:06 | 8:45 | 17:56 | 7:50 | 18:48 | 6:39 | 19:42 | 5:34 | 20:34 | 4:51 | 21:19 | 4:51 | 21:30 | 5:29 | 20:55 | 6:20 | 19:52 | 7:09 | 18:42 | 8:04 | 17:36 | 8:55 | 16:57 |
| 3 | 9:15 | 17:08 | 8:43 | 17:58 | 7:48 | 18:50 | 6:37 | 19:44 | 5:33 | 20:35 | 4:50 | 21:20 | 4:52 | 21:29 | 5:31 | 20:53 | 6:21 | 19:49 | 7:11 | 18:39 | 8:05 | 17:34 | 8:56 | 16:57 |
| 4 | 9:15 | 17:09 | 8:42 | 18:00 | 7:46 | 18:52 | 6:34 | 19:46 | 5:31 | 20:37 | 4:50 | 21:21 | 4:52 | 21:29 | 5:32 | 20:52 | 6:23 | 19:47 | 7:13 | 18:37 | 8:07 | 17:32 | 8:57 | 16:56 |
| 5 | 9:14 | 17:10 | 8:40 | 18:02 | 7:43 | 18:54 | 6:32 | 19:48 | 5:29 | 20:39 | 4:49 | 21:22 | 4:53 | 21:28 | 5:34 | 20:50 | 6:25 | 19:45 | 7:14 | 18:35 | 8:09 | 17:31 | 8:59 | 16:56 |
| 6 | 9:14 | 17:11 | 8:38 | 18:04 | 7:41 | 18:55 | 6:30 | 19:49 | 5:27 | 20:40 | 4:48 | 21:23 | 4:54 | 21:28 | 5:36 | 20:48 | 6:26 | 19:42 | 7:16 | 18:32 | 8:11 | 17:29 | 9:00 | 16:56 |
| 7 | 9:14 | 17:13 | 8:37 | 18:05 | 7:39 | 18:57 | 6:27 | 19:51 | 5:25 | 20:42 | 4:48 | 21:24 | 4:55 | 21:27 | 5:37 | 20:46 | 6:28 | 19:04 | 7:18 | 18:30 | 8:13 | 17:27 | 9:01 | 16:55 |
| 8 | 9:13 | 17:14 | 8:35 | 18:07 | 7:37 | 19:59 | 6:25 | 19:53 | 5:24 | 20:44 | 4:47 | 21:24 | 4:56 | 21:27 | 5:39 | 20:44 | 6:29 | 19:38 | 7:19 | 18:28 | 8:15 | 17:26 | 9:02 | 16:55 |
| 9 | 9:13 | 17:15 | 8:33 | 18:09 | 7:34 | 19:01 | 6:23 | 19:54 | 5:22 | 20:45 | 4:47 | 21:25 | 4:57 | 21:26 | 5:40 | 20:42 | 6:31 | 19:35 | 7:21 | 18:26 | 8:16 | 17:24 | 9:03 | 16:55 |
| 10 | 9:12 | 17:17 | 8:31 | 18:11 | 7:32 | 19:02 | 6:21 | 19:56 | 5:20 | 20:47 | 4:46 | 21:26 | 4:58 | 21:25 | 5:42 | 20:41 | 6:33 | 19:33 | 7:23 | 18:23 | 8:18 | 17:22 | 9:04 | 16:54 |
| 11 | 9:11 | 17:18 | 8:29 | 18:13 | 7:30 | 19:04 | 6:18 | 19:58 | 5:18 | 20:48 | 4:46 | 21:27 | 4:59 | 21:24 | 5:44 | 20:39 | 6:34 | 19:31 | 7:24 | 18:21 | 8:20 | 17:21 | 9:05 | 16:54 |
| 12 | 9:11 | 17:20 | 8:27 | 18:15 | 7:27 | 19:06 | 6:16 | 20:00 | 5:17 | 20:50 | 4:46 | 21:27 | 5:00 | 21:23 | 5:45 | 20:37 | 6:36 | 19:28 | 7:26 | 18:19 | 8:22 | 17:19 | 9:06 | 16:54 |
| 13 | 9:10 | 17:21 | 8:26 | 18:17 | 7:25 | 19:08 | 6:14 | 20:01 | 5:15 | 20:52 | 4:46 | 21:28 | 5:01 | 21:22 | 5:47 | 20:35 | 6:38 | 19:26 | 7:28 | 18:17 | 8:23 | 17:18 | 9:07 | 16:54 |
| 14 | 9:09 | 17:23 | 8:24 | 18:19 | 7:23 | 19:09 | 6:12 | 20:03 | 5:14 | 20:53 | 4:45 | 21:29 | 5:03 | 21:21 | 5:48 | 20:33 | 6:39 | 19:24 | 7:30 | 18:15 | 8:25 | 17:16 | 9:08 | 16:54 |
| 15 | 9:08 | 17:24 | 8:22 | 18:20 | 7:21 | 19:11 | 6:09 | 20:05 | 5:12 | 20:55 | 4:45 | 21:29 | 5:04 | 21:20 | 5:50 | 20:31 | 6:41 | 19:21 | 7:31 | 18:12 | 8:27 | 17:15 | 9:09 | 16:54 |
| 16 | 9:07 | 17:26 | 8:20 | 18:22 | 7:18 | 19:13 | 6:07 | 20:06 | 5:11 | 20:56 | 4:45 | 21:30 | 5:05 | 21:19 | 5:52 | 20:29 | 6:43 | 19:19 | 7:33 | 18:10 | 8:29 | 17:13 | 9:10 | 16:55 |
| 17 | 9:06 | 17:28 | 8:18 | 18:24 | 7:16 | 19:15 | 6:05 | 20:08 | 5:09 | 20:58 | 4:45 | 21:30 | 5:06 | 21:18 | 5:53 | 20:27 | 6:44 | 19:17 | 7:35 | 18:08 | 8:30 | 17:12 | 9:11 | 16:55 |
| 18 | 9:05 | 17:29 | 8:16 | 18:26 | 7:14 | 19:16 | 6:03 | 20:10 | 5:08 | 20:59 | 4:45 | 21:30 | 5:08 | 21:17 | 5:55 | 20:25 | 6:46 | 19:14 | 7:37 | 18:06 | 8:32 | 17:11 | 9:11 | 16:55 |
| 19 | 9:04 | 17:31 | 8:14 | 18:28 | 7:11 | 19:18 | 6:01 | 20:12 | 5:06 | 21:01 | 4:45 | 21:31 | 5:09 | 21:16 | 5:57 | 20:22 | 6:47 | 19:12 | 7:39 | 18:04 | 8:34 | 17:10 | 9:12 | 16:55 |
| 20 | 9:03 | 17:33 | 8:12 | 18:30 | 7:09 | 19:20 | 5:59 | 20:13 | 5:05 | 21:02 | 4:45 | 21:31 | 5:10 | 21:15 | 5:58 | 20:20 | 6:49 | 19:10 | 7:41 | 18:02 | 8:36 | 17:08 | 9:13 | 16:56 |
| 21 | 9:02 | 17:34 | 8:09 | 18:32 | 7:07 | 19:22 | 5:57 | 20:15 | 5:04 | 21:04 | 4:46 | 21:31 | 5:12 | 21:13 | 6:00 | 20:18 | 6:51 | 19:07 | 7:42 | 18:00 | 8:37 | 17:07 | 9:13 | 16:56 |
| 22 | 9:00 | 17:36 | 8:07 | 18:33 | 7:04 | 19:23 | 5:54 | 20:17 | 5:02 | 21:05 | 4:46 | 21:31 | 5:13 | 21:12 | 6:02 | 20:16 | 6:52 | 19:05 | 7:44 | 17:57 | 8:39 | 17:06 | 9:14 | 16:57 |
| 23 | 9:00 | 17:38 | 8:05 | 18:35 | 7:02 | 19:25 | 5:52 | 20:18 | 5:01 | 21:06 | 4:46 | 21:31 | 5:14 | 21:10 | 6:03 | 20:14 | 6:54 | 19:03 | 7:46 | 17:55 | 8:41 | 17:05 | 9:14 | 16:57 |
| 24 | 8:58 | 17:40 | 8:03 | 18:37 | 7:00 | 19:27 | 5:50 | 20:20 | 5:00 | 21:08 | 4:46 | 21:31 | 5:16 | 21:09 | 6:05 | 20:12 | 6:56 | 19:00 | 7:47 | 17:53 | 8:42 | 17:04 | 9:14 | 16:58 |
| 25 | 8:57 | 17:41 | 8:01 | 18:39 | 6:57 | 19:29 | 5:48 | 20:22 | 4:59 | 21:09 | 4:47 | 21:31 | 5:17 | 21:08 | 6:07 | 20:10 | 6:57 | 18:58 | 7:49 | 17:51 | 8:44 | 17:03 | 9:15 | 16:59 |
| 26 | 8:56 | 17:43 | 7:59 | 18:41 | 6:55 | 19:30 | 5:46 | 20:24 | 4:58 | 21:10 | 4:47 | 21:31 | 5:19 | 21:06 | 6:08 | 20:07 | 6:59 | 18:56 | 7:51 | 17:49 | 8:45 | 17:02 | 9:15 | 16:59 |
| 27 | 8:54 | 17:45 | 7:57 | 18:43 | 6:53 | 19:32 | 5:44 | 20:25 | 4:56 | 21:12 | 4:48 | 21:31 | 5:20 | 21:05 | 6:10 | 20:05 | 7:01 | 18:53 | 7:53 | 17:47 | 8:47 | 17:01 | 9:15 | 17:00 |
| 28 | 8:53 | 17:47 | 7:54 | 18:45 | 6:50 | 19:34 | 5:42 | 20:27 | 4:55 | 21:13 | 4:48 | 21:31 | 5:22 | 21:03 | 6:11 | 20:03 | 7:02 | 18:51 | 7:55 | 17:45 | 8:49 | 17:00 | 9:15 | 17:01 |
| 29 | 8:51 | 17:49 |  |  | 6:48 | 19:36 | 5:40 | 20:29 | 4:54 | 21:14 | 4:49 | 21:31 | 5:23 | 21:02 | 6:13 | 20:01 | 7:04 | 18:49 | 7:56 | 17:43 | 8:50 | 17:00 | 9:15 | 17:02 |
| 30 | 8:50 | 17:50 |  |  | 6:46 | 19:37 | 5:38 | 20:30 | 4:54 | 21:15 | 4:50 | 21:31 | 5:25 | 21:00 | 6:15 | 19:58 | 7:06 | 18:46 | 7:58 | 17:42 | 8:51 | 16:59 | 9:15 | 17:03 |
| 31 | 8:48 | 17:52 |  |  | 6:43 | 19:39 |  |  | 4:53 | 21:17 |  |  | 5:26 | 20:59 | 6:16 | 19:56 |  |  | 8:00 | 17:40 |  |  | 9:15 | 17:04 |
| ${ }^{\text {'Sunrise/set }}$ = corresponds to the upper limb of the sun appearing at the horizon |  |  |  |  |  |  |  |  |  | ${ }^{2}$ National Research Council of Canada, Hertzberg Institute of Astrophysics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Monthly Global and Diffuse Solar Radiation, 2002

| MONTH | GLOBAL RADIATION ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) |  | CUMULATIVE GLOBAL RADIATION (MJ/m²) |  | DIFFUSE RADIATION ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) |  | CUMULATIVE DIFFUSE RADIATION (MJ/m²) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2002 | Normal | 2002 | Normal | 2002 | Normal | 2002 | Normal |
| January | 113.7 | 129.9 | 113.7 | 129.9 | 61.7 | 71.4 | 61.7 | 71.4 |
| February | 200.1 | 210.1 | 313.8 | 340.0 | 90.6 | 105.3 | 152.3 | 176.7 |
| March | 384.1 | 362.4 | 697.9 | 702.4 | 170.3 | 173.9 | 322.6 | 350.6 |
| April | 500.1 | 492.2 | 1198.0 | 1194.6 | 207.9 | 178.5 | 530.5 | 529.1 |
| May | 842.3 | 586.3 | 2040.3 | 1780.9 | 206.2 | 222.2 | 736.7 | 751.3 |
| June | 818.5 | 638.7 | 2858.8 | 2419.6 | 223.7 | 228.1 | 960.4 | 979.4 |
| July | 700.8 | 633.5 | 3559.6 | 3053.1 | 193.9 | 216.5 | 1154.3 | 1195.9 |
| August | 514.8 | 529.0 | 4074.4 | 3582.1 | 187.4 | 185.6 | 1341.7 | 1381.5 |
| September | 359.9 | 351.8 | 4434.3 | 3933.9 | 124.2 | 127.6 | 1465.9 | 1509.1 |
| October | 216.8 | 239.1 | 4651.1 | 4173.0 | 127.6 | 92.6 | 1593.5 | 1601.7 |
| November | 114.7 | 123.7 | 4765.8 | 4296.7 | 64.5 | 73.6 | 1658.0 | 1675.3 |
| December | 91.2 | 95.2 | 4857.0 | 4391.9 | 47.9 | 54.3 | 1705.9 | 1729.6 |
| Total | 4857.0 | 4391.9 |  |  | 1705.9 | 1729.6 |  |  |
| Normals $=1961-1990$ |  |  |  |  |  |  |  |  |



Daily global and Diffuse Solar Radiation, 2002
( $\mathrm{MJ} / \mathrm{m}^{2}$ )

| DATE | JAN |  | FEB |  | MAR |  | APR |  | MAY |  | JUN |  | JULY |  | AUG |  | SEPT |  | OCT |  | NOV |  | DEC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2002 | G | D | G | D | G | D | G | D | G | D | G | D | G | D | G | D | G | D | G | D | G | D | G | D |
| 1 | 3.1 | 1.2 | 3.9 | 3.8 | 12.0 | 1.9 | 12.3 | 10.9 | 24.8 | 2.6 | 35.9 | 7.2 | 30.6 | 5.7 | 15.2 | 6.4 | 6.7 | 6.3 | 10.7 | 4.4 | 7.7 | 1.5 | 1.3 | 1.2 |
| 2 | 3.5 | 1.9 | 5.0 | 3.6 | 12.7 | 1.8 | 18.8 | 5.1 | 12.6 | 10.4 | 18.7 | 11.1 | 39.9 | 3.8 | 18.8 | 6.5 | 19.1 | 2.9 | 12.5 | 4.1 | 8.1 | 2.2 | 1.0 | 1.0 |
| 3 | 2.9 | 1.2 | 6.1 | 1.9 | 5.4 | 5.2 | 19.0 | 6.1 | 12.2 | 7.4 | 26.9 | 13.5 | 31.9 | 4.2 | 12.0 | 10.0 | 16.1 | 7.0 | 7.9 | 4.5 | 2.7 | 2.6 | 5.8 | 1.3 |
| 4 | 3.4 | 2.5 | 6.3 | 2.6 | 6.1 | 6.1 | 19.5 | 6.9 | 16.8 | 8.5 | 25.6 | 8.1 | 17.7 | 7.9 | 17.3 | 8.3 | 13.4 | 6.6 | 4.6 | 4.0 | 3.6 | 3.5 | 4.9 | 2.3 |
| 5 | 1.5 | 1.3 | 6.4 | 3.4 | 9.4 | 6.3 | 14.5 | 10.0 | 25.0 | 4.1 | 33.1 | 6.7 | 28.9 | 3.7 | 13.2 | 7.6 | 3.7 | 3.6 | 8.2 | 4.7 | 3.7 | 3.3 | 5.1 | 1.1 |
| 6 | 3.1 | 2.3 | 7.2 | 1.4 | 13.3 | 2.1 | 7.7 | 7.5 | 25.2 | 4.3 | 20.3 | 9.1 | 29.1 | 4.8 | 14.0 | 8.2 | 3.5 | 3.1 | 7.0 | 5.3 | 2.6 | 2.5 | 2.2 | 2.0 |
| 7 | 3.5 | 1.4 | 6.1 | 3.3 | 9.7 | 6.0 | 10.0 | 9.6 | 25.0 | 4.3 | 36.6 | 5.5 | 29.1 | 2.8 | 17.4 | 6.2 | 2.4 | 2.2 | 4.1 | 3.5 | 4.1 | 2.0 | 2.0 | 1.9 |
| 8 | 2.8 | 1.5 | 3.9 | 3.4 | 11.8 | 4.9 | 15.3 | 8.7 | 17.4 | 11.9 | 17.3 | 10.9 | 21.5 | 13.2 | 19.3 | 7.0 | 12.4 | 6.6 | 12.8 | 2.1 | 1.7 | 1.7 | 3.4 | 2.0 |
| 9 | 3.0 | 1.7 | 5.3 | 3.5 | 13.9 | 3.0 | 19.3 | 5.3 | 20.6 | 7.4 | 10.9 | 7.0 | 5.3 | 4.3 | 21.8 | 6.1 | 18.6 | 2.2 | 11.5 | 2.3 | 1.8 | 1.8 | 3.6 | 1.3 |
| 10 | 4.4 | 1.3 | 4.6 | 4.4 | 6.6 | 6.6 | 6.7 | 6.3 | 23.0 | 7.0 | 11.9 | 7.7 | 23.1 | 9.6 | 16.8 | 5.4 | 18.2 | 2.0 | 7.7 | 4.9 | 2.7 | 2.7 | 3.9 | 1.3 |
| 11 | 3.9 | 1.4 | 4.8 | 3.5 | 11.9 | 7.1 | 19.1 | 5.7 | 18.0 | 10.1 | 8.1 | 5.2 | 27.7 | 3.7 | 3.9 | 3.4 | 17.6 | 2.3 | 6.0 | 5.0 | 2.6 | 2.3 | 1.8 | 1.5 |
| 12 | 1.7 | 1.8 | 7.9 | 2.4 | 10.7 | 7.8 | 17.6 | 5.8 | 26.2 | 3.5 | 17.0 | 7.7 | 27.0 | 4.7 | 22.8 | 5.3 | 16.8 | 3.2 | 9.6 | 3.9 | 5.3 | 2.4 | 4.8 | 1.2 |
| 13 | 1.0 | 1.1 | 5.5 | 5.1 | 9.0 | 8.6 | 14.9 | 7.5 | 24.8 | 5.3 | 36.0 | 6.1 | 27.0 | 3.9 | 16.2 | 9.8 | 14.7 | 4.5 | 6.6 | 4.7 | 3.8 | 3.1 | 2.6 | 1.9 |
| 14 | 1.1 | 1.2 | 8.2 | 2.8 | 13.4 | 6.1 | 9.3 | 7.3 | 23.5 | 7.5 | 37.5 | 7.2 | 19.1 | 9.8 | 17.2 | 9.2 | 16.5 | 2.8 | 9.9 | 5.0 | 3.0 | 2.9 | 2.6 | 1.8 |
| 15 | 2.5 | 1.9 | 6.3 | 4.5 | 13.6 | 5.0 | 17.4 | 6.4 | 28.5 | 6.3 | 37.8 | 6.9 | 27.9 | 3.0 | 8.7 | 6.8 | 15.7 | 2.8 | 5.8 | 4.8 | 4.0 | 2.2 | 1.3 | 1.3 |
| 16 | 2.1 | 2.2 | 9.4 | 1.7 | 10.8 | 8.2 | 15.7 | 9.7 | 38.0 | 3.3 | 31.3 | 8.8 | 25.0 | 5.9 | 9.2 | 7.9 | 13.7 | 4.9 | 3.2 | 3.0 | 5.4 | 2.4 | 3.8 | 1.5 |
| 17 | 4.3 | 2.4 | 8.3 | 1.6 | 13.0 | 8.3 | 16.3 | 6.6 | 37.3 | 4.6 | 28.6 | 11.2 | 15.2 | 6.0 | 22.7 | 3.1 | 11.4 | 7.5 | 2.7 | 2.6 | 3.1 | 1.8 | 1.9 | 1.9 |
| 18 | 2.6 | 2.7 | 4.4 | 4.4 | 12.0 | 7.8 | 21.0 | 5.1 | 35.8 | 6.6 | 10.4 | 6.9 | 24.8 | 6.4 | 15.1 | 7.0 | 15.3 | 3.0 | 4.0 | 3.8 | 4.8 | 1.1 | 2.4 | 1.8 |
| 19 | 2.6 | 2.6 | 3.2 | 3.4 | 14.1 | 5.7 | 22.0 | 5.6 | 35.3 | 7.6 | 22.4 | 7.5 | 13.4 | 8.3 | 21.4 | 3.7 | 14.3 | 4.0 | 4.6 | 3.8 | 3.3 | 2.2 | 1.0 | 1.0 |
| 20 | 2.6 | 2.8 | 9.8 | 2.0 | 16.9 | 3.8 | 22.2 | 3.8 | 37.7 | 4.4 | 36.8 | 6.5 | 25.0 | 5.0 | 18.6 | 7.4 | 7.5 | 5.9 | 6.3 | 5.9 | 4.4 | 1.4 | 1.5 | 1.5 |
| 21 | 2.8 | 2.8 | 8.0 | 3.5 | 16.9 | 2.6 | 22.4 | 3.3 | 28.1 | 11.1 | 37.1 | 7.0 | 12.4 | 8.8 | 22.0 | 2.8 | 8.2 | 5.6 | 10.0 | 8.5 | 4.3 | 1.4 | 2.2 | 2.2 |
| 22 | 4.6 | 3.2 | 7.9 | 2.8 | 17.0 | 2.2 | 15.9 | 9.1 | 16.2 | 8.8 | 39.9 | 5.4 | 27.1 | 4.0 | 17.9 | 6.6 | 5.6 | 4.8 | 4.9 | 4.5 | 3.2 | 2.0 | 2.0 | 1.9 |
| 23 | 4.7 | 2.0 | 8.9 | 4.6 | 16.8 | 3.3 | 14.2 | 10.1 | 34.4 | 4.0 | 22.7 | 12.0 | 26.4 | 3.7 | 20.4 | 3.4 | 14.1 | 4.7 | 9.7 | 9.4 | 5.0 | 1.1 | 2.3 | 2.0 |
| 24 | 4.4 | 2.4 | 11.2 | 2.9 | 15.0 | 6.6 | 13.1 | 10.7 | 19.6 | 10.2 | 6.7 | 4.3 | 22.2 | 8.2 | 21.2 | 2.1 | 13.3 | 4.5 | 8.8 | 2.6 | 5.1 | 1.7 | 3.9 | 1.8 |
| 25 | 3.1 | 3.3 | 9.7 | 3.8 | 12.8 | 7.9 | 23.7 | 2.6 | 27.9 | 9.7 | 38.2 | 4.7 | 26.1 | 4.0 | 19.2 | 4.4 | 14.0 | 3.4 | 2.0 | 2.0 | 3.4 | 2.3 | 4.1 | 1.0 |
| 26 | 3.1 | 3.2 | 9.2 | 6.5 | 14.7 | 7.0 | 23.6 | 4.3 | 37.9 | 4.0 | 39.2 | 4.2 | 16.1 | 8.5 | 13.3 | 7.0 | 11.8 | 5.8 | 3.5 | 3.3 | 2.9 | 2.3 | 2.9 | 1.8 |
| 27 | 6.1 | 2.3 | 10.9 | 2.0 | 7.6 | 6.3 | 22.2 | 4.2 | 33.3 | 5.7 | 38.7 | 4.9 | 24.0 | 6.2 | 17.4 | 5.1 | 14.8 | 2.3 | 3.4 | 3.4 | 2.7 | 2.6 | 3.2 | 1.0 |
| 28 | 7.3 | 1.5 | 11.7 | 1.8 | 16.1 | 4.2 | 14.5 | 7.9 | 36.7 | 5.4 | 32.9 | 8.9 | 17.8 | 9.7 | 20.5 | 2.4 | 13.4 | 3.2 | 7.3 | 3.9 | 2.9 | 2.1 | 3.6 | 1.6 |
| 29 | 7.7 | 1.6 |  |  | 13.1 | 6.9 | 18.7 | 7.4 | 30.6 | 8.0 | 21.3 | 8.4 | 18.1 | 9.2 | 18.9 | 4.2 | 5.4 | 4.9 | 4.7 | 4.2 | 3.3 | 2.3 | 1.3 | 1.3 |
| 30 | 6.6 | 1.5 |  |  | 17.0 | 4.4 | 13.2 | 8.4 | 36.9 | 4.2 | 38.7 | 3.1 | 14.9 | 9.6 | 9.8 | 8.0 | 1.7 | 1.6 | 8.5 | 2.0 | 3.5 | 1.1 | 4.9 | 1.1 |
| 31 | 7.7 | 1.5 |  |  | 10.8 | 6.6 |  |  | 33.0 | 8.0 |  |  | 6.5 | 5.3 | 12.6 | 6.1 |  |  | 8.3 | 1.5 |  |  | 3.9 | 1.4 |
| TOTAL | 113.7 | 61.7 | 200.1 | 90.6 | 384.1 | 170.3 | 500.1 | 207.9 | 842.3 | 206.2 | 818.5 | 223.7 | 700.8 | 193.9 | 514.8 | 187.4 | 359.9 | 124.2 | 216.8 | 127.6 | 114.7 | 64.5 | 91.2 | 47.9 |

COMMENTS: G= Global Radiation D= Diffuse Radiation
January Diffuse shaded cells - diffuse radiation greater than global radiation related to instrument standard error and/or instrument maladjustment
May 23 Global and Diffuse down for servicing for 1 hour
July 4 Sensors off line for 1 hour while new calibration numbers entered into programme
Oct. 21-23 Diffuse shadow band maladjusted

Monthly Average Soil Temperatures at 0900 hrs, 2002
(5 to 300 cm depths)

|  | Average Air Temp. | 5cm | $\left.{ }^{\circ} \mathrm{C}\right)$ | 10 cm | $\left({ }^{\circ} \mathrm{C}\right)$ | 20 cm | $\left({ }^{\circ} \mathrm{C}\right)$ | 50 cm | $\left({ }^{\circ} \mathrm{C}\right)$ | 100 c | $\left({ }^{\circ} \mathrm{C}\right)$ | 150 | $\left({ }^{\circ} \mathrm{C}\right)$ | 300 c | $\left({ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MONTH | @0900h | 2002 | Normal |
| January | -14.9 | -8.9 | -8.8 | -7.6 | -8.3 | -5.3 | -7.6 | -2.8 | -3.8 | 0.8 | -0.2 | 2.7 | 1.8 | 5.4 | 4.5 |
| February | -9.9 | -7.6 | -7.7 | -6.2 | -7.3 | -4.3 | -6.8 | -3.4 | -4.1 | -0.8 | -1.0 | 0.9 | 0.8 | 3.9 | 3.3 |
| March | -14.5 | -9.8 | -3.4 | -8.4 | -3.1 | -5.8 | -2.8 | -4.6 | -1.8 | -1.4 | -0.6 | 0.3 | 0.4 | 2.8 | 2.5 |
| April | -1.2 | 0.1 | 2.8 | 1.9 | 3.2 | 3.3 | 3.5 | 1.0 | 2.5 | 0.6 | 1.2 | 0.9 | 1.2 | 2.2 | 2.2 |
| May | 9.2 | 8.0 | 10.1 | 9.8 | 10.6 | 10.8 | 10.9 | 6.9 | 8.9 | 4.8 | 5.9 | 3.8 | 4.4 | 3.0 | 3.1 |
| June | 17.5 | 14.9 | 15.3 | 16.9 | 15.7 | 17.6 | 16.2 | 12.8 | 14.0 | 9.4 | 10.4 | 7.4 | 8.2 | 4.8 | 5.2 |
| July | 19.6 | 15.7 | 17.6 | 19.6 | 18.0 | 20.7 | 18.8 | 16.7 | 16.8 | 13.0 | 13.2 | 10.5 | 11.1 | 6.9 | 7.5 |
| August | 15.7 | 10.6 | 16.4 | 15.0 | 16.8 | 16.3 | 17.9 | 14.5 | 16.8 | 12.9 | 14.1 | 11.6 | 12.4 | 8.8 | 9.1 |
| September | 10.2 | 5.9 | 10.5 | 11.2 | 11.2 | 12.7 | 12.5 | 12.8 | 13.3 | 12.4 | 12.5 | 11.7 | 11.9 | 9.6 | 9.9 |
| October | -1.9 | -1.6 | 4.1 | 1.9 | 4.5 | 3.4 | 6.0 | 5.8 | 8.0 | 8.0 | 9.2 | 9.0 | 9.7 | 9.2 | 9.5 |
| November | -5.4 | -4.0 | -2.2 | -2.3 | -1.7 | -0.9 | -0.5 | 1.3 | 2.8 | 4.4 | 5.4 | 6.0 | 6.8 | 7.6 | 8.1 |
| December | -9.1 | -5.6 | -7.1 | -4.5 | -6.5 | -3.1 | -5.5 | -1.3 | -1.6 | 1.9 | 1.9 | 3.7 | 3.9 | 6.0 | 6.3 |
| Normal $=1961-1990$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Soil Temperatures at 0900h, 5 to 20 cm


## Soil Temperatures at $0900 \mathrm{~h}, 50 \mathrm{~cm}$ to 300 cm



Soil Temperatures at $1600 \mathrm{~h}, 5 \mathrm{~cm}$ to 20 cm

$\longrightarrow-5 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right)$

-     -         -             -                 - Normal Temperature at $5 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right)$
- $-10 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right)$
-- - - - Normal Temperature at $10 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right)$
$\longrightarrow-20 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right)$
-- - - - Normal Temperature at $20 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right)$

Monthly Average Wind Speed and Extreme Gusts, 2002

| MONTH | AVERAGE (km/h) |  | EXTREME GUST ( $\mathrm{km} / \mathrm{h}$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2002 | Normal* | Direction | 2002 | Date |
| January | 12.2 | 16.0 | NW | 42.0 | 13 |
| February | 14.1 | 16.0 | NW | 66.3 | 11 |
| March | 13.9 | 17.0 | NNW | 60.3 | 29 |
| April | 15.9 | 18.0 | WSW | 74.0 | 15 |
| May | 19.0 | 18.0 | W | 78.2 | 29 |
| June | 15.3 | 17.0 | S | 73.2 | 17 |
| July | 16.0 | 16.0 | WNW | 75.6 | 05 |
| August | 12.5 | 16.0 | E | 62.2 | 25 |
| September | 15.1 | 17.0 | NW | 63.2 | 19 |
| October | 12.7 | 17.0 | SSW | 56.4 | 02 |
| November | 13.9 | 16.0 | NW | 72.8 | 22 |
| December | 13.9 | 16.0 | SE | 54.8 | 16 |
| *1961-90 Normals used are from the Environment Canada, Saskatoon A station |  |  |  |  |  |



Extreme Winds for $2002^{1}$

${ }^{1}$ Beaufort Wind Scale Designation

## Windchill Calculation Chart ${ }^{1}$

 (revised 2001)| $\mathbf{V}$ | $\mathbf{5}$ | $\mathbf{0}$ | $\mathbf{- 5}$ | $\mathbf{- 1 0}$ | $\mathbf{- 1 5}$ | $\mathbf{- 2 0}$ | $\mathbf{- 2 5}$ | $\mathbf{- 3 0}$ | $\mathbf{- 3 5}$ | $\mathbf{- 4 0}$ | $\mathbf{- 4 5}$ | $\mathbf{- 5 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{5}$ | 4 | -2 | -7 | -13 | -19 | -24 | -30 | -36 | -41 | -47 | -53 | -58 |
| $\mathbf{1 0}$ | 3 | -3 | -9 | -15 | -21 | -27 | -33 | -39 | -45 | -51 | -57 | -63 |
| $\mathbf{1 5}$ | 2 | -4 | -11 | -17 | -23 | -29 | -35 | -41 | -48 | -54 | -60 | -66 |
| $\mathbf{2 0}$ | 1 | -5 | -12 | -18 | -24 | -31 | -37 | -43 | -49 | -56 | -62 | -68 |
| $\mathbf{2 5}$ | $\mathbf{1}$ | -6 | -12 | -19 | -25 | -32 | -38 | -45 | -51 | -57 | -64 | -70 |
| $\mathbf{3 0}$ | 0 | -7 | -13 | -20 | -26 | -33 | -39 | -46 | -52 | -59 | -65 | -72 |
| $\mathbf{3 5}$ | 0 | -7 | -14 | -20 | -27 | -33 | -40 | -47 | -53 | -60 | -66 | -73 |
| $\mathbf{4 0}$ | -1 | -7 | -14 | -21 | -27 | -34 | -41 | -48 | -54 | -61 | -68 | -74 |
| $\mathbf{4 5}$ | -1 | -8 | -15 | -21 | -28 | -35 | -42 | -48 | -55 | -62 | -69 | -75 |
| $\mathbf{5 0}$ | -1 | -8 | -15 | -22 | -29 | -35 | -42 | -49 | -56 | -63 | -70 | -76 |
| $\mathbf{5 5}$ | -2 | -9 | -15 | -22 | -29 | -36 | -43 | -50 | -57 | -63 | -70 | -77 |
| $\mathbf{6 0}$ | -2 | -9 | -16 | -23 | -30 | -37 | -43 | -50 | -57 | -64 | -71 | -78 |
| $\mathbf{6 5}$ | -2 | -9 | -16 | -23 | -30 | -37 | -44 | -51 | -58 | -65 | -72 | -79 |
| $\mathbf{7 0}$ | -2 | -9 | -16 | -23 | -30 | -37 | -44 | -51 | -59 | -66 | -73 | -80 |
| $\mathbf{7 5}$ | -3 | -10 | -17 | -24 | -31 | -38 | -45 | -52 | -59 | -66 | -73 | -80 |
| $\mathbf{8 0}$ | -3 | -10 | -17 | -24 | -31 | -38 | -45 | -52 | -60 | -67 | -74 | -81 |

where $\mathrm{T}=$ Air temperature $\left({ }^{\circ} \mathrm{C}\right)$ and $\mathrm{V}=$ Observed wind speed at 10 m elevation (km/h).

## Approximate Thresholds:

| Risk of frostbite in prolonged exposure: wind <br> chill below | $-\mathbf{- 2 5}$ |  |
| :--- | :---: | :--- |
| Frostbite possible in 10 minutes at | $-\mathbf{3 5}$ | Warm skin, suddenly exposed. Shorter time if skin is cool at <br> the start. |
| Frostbite possible in less than 2 minutes at | -60 | Warm skin, suddenly exposed. Shorter time if skin is cool at <br> the start. |

Source: Environment Canada, 2001a

| Saskatchewan Research Council Annual Weather Summary <br> latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 36 \mathrm{~W}$ asl 497 m Saskatoon |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2001 \\ \text { VALUE } \end{gathered}$ | ORMAL (1971-2000) OR EXTREME (1892-2002) |
|  | Average annual maximum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme annual maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average annual minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme annual minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Annual average ( ${ }^{\circ} \mathrm{C}$ ) <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | 8.5 37.2 June 28 -2.9 -32.2 Jan. 31 2.8 219 | 10.8 39.3 July 05 -1.6 -34.0 Jan. 09 4.6 189 | 8.3 41.0 June 1988 -3.4 -50.0 Feb. 1893 2.5 197.1 |
|  | Annual growing ( $5^{\circ} \mathrm{C}$ base) <br> Annual frost-free growing ( $5^{\circ} \mathrm{C}$ base) <br> Annual heating ( $18^{\circ} \mathrm{C}$ base) <br> Annual cooling ( $18^{\circ} \mathrm{C}$ base) | $\begin{array}{r} 1699.9 \\ 1572.2 \\ 5760.9 \\ 227.9 \end{array}$ | $\begin{array}{r} 1980.7 \\ 5062.6 \\ 219.2 \end{array}$ | $\begin{array}{r} 1672.5 \\ 5772.7 \\ 119.1 \end{array}$ |
|  | Annual total (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 320.0 \\ 32.2 \text { July } 09 \\ 107 \end{array}$ | $\begin{array}{r} 165.8 \\ \text { 19.4 July } 25 \\ 84 \end{array}$ | $\begin{array}{r} 348.2 \\ \text { 99.4 June 24, } 1983 \\ 115.7 \end{array}$ |
| $\begin{array}{\|l} \hline 0 \\ 2 \\ 3 \end{array}$ | Average monthly speed (km/h) Peak gust (direction/speed/date) | $\begin{array}{r} 14.5 \\ \text { w78.2 May } 29 \end{array}$ | $\begin{array}{r} 14.4 \\ \text { wnw } 84.8 \text { July } 28 \end{array}$ | $\begin{array}{r} 16.6^{*} \\ \text { w151.0 Aug 14, 1967* } \end{array}$ |
| z | Total annual bright sunshine (hours) <br> \% possible bright sunshine <br> Bright Sunshine days <br> Total annual global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Total annual diffuse radiation (MJ/m² | $\begin{array}{r} 2313.6 \\ 51.6 \\ 319 \\ 4857.0 \\ 1705.9 \end{array}$ | $\begin{array}{r} 2497.8 \\ 55.7 \\ 331 \\ 4540.6 \\ 1654.6 \end{array}$ | $\begin{array}{r} 2294.1 \\ 51.2 \\ 319.9 \\ 4391.9^{* *} \\ 1729.6^{* *} \end{array}$ |
|  | r Your Information <br> 2001 <br> rass temperatures are <br> Grass aken from a surface probe taken from hose calibration is unknown whose calib present. at present. <br> October $4^{\text {th }}$ <br> $30^{\text {th }}$. Powe missed Brig Data for th from Kerne of Saskatch | eratures are surface probe on is unknown <br> $10^{\text {th }}$ and $26^{\text {th }}$ to tage resulted in Sunshine data. days is taken arm, University an. ${ }^{1}$ <br> wan, Kernen Farm, 2001 | and Extreme V <br> 1971-2000 norm ated from original dsheets and chec <br> e, missing data <br> he University of <br> (2.5 km E of e of Canada Air Wind normals m station. Global d by '**' are from e values are from s extending back 882 to 1901 have | CRS have been tered on computerized r correctness. Where en replaced with data chewan, Kernen Farm and the Meteorological ation (10 km WNW of with '*' are from the MSC ffuse radiation normals 990 period. askatoon area weather <br> 2. The earlier records large gaps. |
|  | Agriculture, Food and Rural Revitalization | Agriculture and Agri-Food Canada |  |  |


| Saskatchewan Research Council Monthly Weather Summary |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | January 2002 | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2001 \\ \text { VALUE } \end{gathered}$ | NORMAL OR EXTREME FOR CRS <br> 1971-2000 (1961-90) | $\begin{array}{r} \hline \text { EXTREM } \\ \text { SASKA } \\ \text { STATI } \\ \hline \end{array}$ | F FOR TOON ONS |
|  | Average monthly maximum ( ${ }^{\circ} \mathrm{C}$ ) <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} -9.2 \\ 6.8 / 08 \\ -17.6 \\ -32.2 / 31 \\ -13.4 \\ 30 \end{array}$ | $\begin{array}{r} -3.0 \\ 4.6 / 04 \\ -12.5 \\ -24.0 / 31 \\ -7.8 \\ 31 \end{array}$ | $-11.6(-12.4)$ $7.0 / 1986 / 11$ $-21.8(-22.6)$ $-43.0 / 1966 / 22 \& 1969 / 29$ $-16.7(-17.4)$ $31(31)$ |  | /1931/3 <br> /1893/31 |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 0.0 \\ 0.0 \\ 973.3 \\ 973.3 \\ 0.0 \\ 0.0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0.0 \\ 799.4 \\ 799.4 \\ 0.0 \\ 0.0 \end{array}$ | $\begin{array}{r} 0.0(0.0) \\ 0.0(0.0) \\ 1076.5(1114.8) \\ 1076.5(1114.8) \\ 0.0(0.0) \\ 0.0(0.0) \end{array}$ |  |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 2.9 \\ 2.9 \\ 1.1 / 02 \\ 6 \end{array}$ | $\begin{array}{r} 2.5 \\ 2.5 \\ 1.4 / 31 \\ 3 \end{array}$ | $\begin{array}{r} 18.2(20.5) \\ 18.2(20.5) \\ 15.4 / 1989 / 30 \\ 11(11) \end{array}$ | 30.5 | /1893/23 |
|  | Average monthly speed (km/h) Peak gust (direction/speed/date) | $\begin{array}{r} 12.2 \\ \mathrm{Nw} 42.0 / 13 \end{array}$ | $\begin{array}{r} 12.7 \\ \text { wnw51.6/04 } \end{array}$ |  |  | $\begin{array}{r} 16 \\ \text { /1986/1 } \end{array}$ |
|  | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> Bright Sunshine days <br> Monthly global radiation(MJ/m²) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 107.5 \\ 41.5 \\ 21 \\ 113.7 \\ 61.7 \end{array}$ | $\begin{array}{r} 130.0 \\ 50.1 \\ 28 \\ 131.3 \\ 62.6 \end{array}$ | $\begin{array}{r} 103.3(104.6) \\ 39.9(40.4) \\ 24(24) \\ (129.9) \\ (71.4) \end{array}$ |  |  |
|  | Average grass level ${ }^{*} / 5 \mathrm{~cm}$ <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} -19.8 /-8.9 \\ -7.6 /-5.3 \\ -2.8 / 0.8 \\ 2.7 / 5.4 \end{array}$ | $\begin{array}{r} -15.0 /-5.8 \\ -4.5 /-3.0 \\ -2.2 /-0.5 \\ 2.2 / 4.8 \end{array}$ | $\begin{array}{r} (\mathrm{na} /-8.8) \\ (-8.3 /-7.6) \\ (-3.8 /-0.2) \\ (1.8 / 4.5) \end{array}$ |  |  |
|  | Your Information <br> Unseasonably warm temperatures, book e reezing and just missed tieing the maximum reco he monthly mean was $3.3^{\circ} \mathrm{C}$ above the new 197 majority of the warming. The warm weather was f 2001 has continued into 2002 with only 2.9 m 5 cm soil temperatures which was the only depth 0 days, the monthly total was just slightly above Today, the ability to measure temperature y Gabriel Fahrenheit, is only 278 years old. placing a scale on this device, scientists of the hermometers bore no relationship to each other and later Celsius, that universal scales, based on leveloped and accepted. ${ }^{1} \quad{ }^{1}$ Helden. 1995 | ded with more d by $0.2^{\circ}$. Eve 1-2000 norm flected in the m of precipita recording below average. <br> a quantitative 1603, Galile me invented th therefore their set points such | typical ones, with extreme s. The above $.6 \%$ decreas on recorded. seasonal no <br> form is taken used a therm first thermon measurement as water boil | characterised January 2002. low temperatures during the la average minimum temperatu in the number of heating degr Snow-on-the-ground was spar rmals. Even though bright sur <br> for granted but the modern th moscope to watch the chang meter. Unfortunately, the scales s could not be compared. It wa ing and freezing and normal bo | he $8^{\text {th }}$ rema third of th s contribut e-days. Th and evid hine was <br> rmometer, in temper between th not until F y temperat | ain above he month ted to the e drough ent in the absent for <br> invented ature. By he various ahrenhei ure, were |
|  | 14 SaskPower <br> Saskatchewan Agriculture, Food and Rural Revitalization | Agriculture Agri-Food | Agricultur <br> a Agroalim | et taire Canada 2 Ducks Unlimited Canada |  <br> Zonen |  |

[^2]| Saskatchewan Research Council Monthly Weather Summary |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | February 2002 | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2001 \\ \text { VALUE } \end{gathered}$ | RMAL OR EXTREME FOR CRS 1971-2000 (1961-90) | $\begin{array}{r} \hline \text { EXTREM } \\ \text { SASKAT } \\ \text { STATIC } \\ \hline \end{array}$ |  |
|  | Average monthly maximum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No.of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} \hline-2.1 \\ 7.9 / 17 \\ -12.2 \\ -27.4 / 28 \\ -7.2 \\ 28 \end{array}$ |  | $-7.7(-8.6)$ $7.5 / 1988 / 26 \& 1991 / 06$ $-17.6(-18.3)$ $-41.1 / 1972 / 06$ $-12.7(-13.7)$ $28(28)$ | 12.8 -50.0 | /1931/19 <br> /1893/01 |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 0.0 \\ 0.0 \\ 705.1 \\ 1678.4 \\ 0.0 \\ 0.0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0.0 \\ 804.9 \\ 1604.3 \\ 0.0 \\ 0.0 \end{array}$ | $\begin{array}{r} 0.0(0.0) \\ 0.0(0.0) \\ 866.3(909.9) \\ 1942.8(2024.7) \\ 0.0(0.0) \\ 0.0(0.0) \end{array}$ |  |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 3.3 \\ 6.2 \\ 2.8 / 19 \\ 3 \end{array}$ | $\begin{array}{r} 9.0 \\ 24.3 \\ 3.7 / 29 \\ 6 \end{array}$ | $\begin{array}{r} 13.3(14.6) \\ 31.5(35.1) \\ 14.2 / 1979 / 13 \\ 10(10) \end{array}$ | 30.0/ | 1962/03 |
|  | Average monthly speed (km/h) Peak gust (direction/speed/date) | $\begin{array}{r} 14.1 \\ \text { Nw } 66.3 / 11 \end{array}$ | $\begin{array}{r} 12.6 \\ \mathrm{Nw} 42.7 / 29 \end{array}$ |  | N106. | $\begin{array}{r} 16.0 \\ 1988 / 22 \end{array}$ |
|  | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> Bright Sunshine days <br> Monthly global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 157.4 \\ 56.4 \\ 26 \\ 200.1 \\ 90.6 \end{array}$ | $\begin{array}{r} 182.0 \\ 63.0 \\ 26 \\ 235.4 \\ 88.3 \end{array}$ | $\begin{array}{r} 132.3(134.1) \\ 47.4(48.2) \\ 24(25) \\ (210.1) \\ (105.3) \end{array}$ |  |  |
|  | Average grass level ${ }^{*} / 5 \mathrm{~cm}$ <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} -14.1 /-7.6 \\ -6.2 /-4.3 \\ -3.4 /-0.8 \\ 0.9 / 3.9 \end{array}$ | $\begin{array}{r} -14.5 /-4.9 \\ -6.2 /-4.2 \\ -3.2 /-0.1 \\ 1.3 / 3.8 \end{array}$ | $\begin{array}{r} \mathrm{na} /(-7.7) \\ (-7.3 /-6.8) \\ (-4.1 /-1.0) \\ (0.8 / 3.3) \end{array}$ |  |  |
|  | Your Information <br> February continued drought conditions with ormal. By month's end, the snow-on-the-grou $5.6^{\circ} \mathrm{C}$ above normal, set a new monthly ex $0.4^{\circ} \mathrm{C}$. Not even the cold month-end temp warmer temperatures and no snow cover has where temperatures are above normal by $1.1^{\circ}$ bove normal. <br> Warm winter conditions in February have be unseasonably mild winter temperatures at C hermometer $40^{\circ}+\left(4 \cdot 5^{\circ} \mathrm{C}\right)$. Cleaned the snow Several Indians came in with only 20 foxes am | only 3.3 mm of nd measurem reme maxim ratures could roduced soil and $2.5^{\circ} \mathrm{C}$ r <br> n recorded h esterfield Ho off the houses ngst them al | precipitation nt was nearly temperatu ffset the 13 mperatures pectively. <br> orically. In 1 e near pres prevent its A warm win | rging the yearly precipit gligible. Temperatures, reaking the old record of above zero weathe normal in all levels exc sunshine, absent for on <br> Peter Fidler, a Hudson day Leader, SK. He w ing and running through meant poor trapping. ${ }^{1}$ | on deficit to aring to an in 1988 The combin the 10 and 2 days, wa <br> Bay trader, te "Warm nd spoiling | to $20 \%$ of average and 1991 ination of nd 20 cm as $19.0 \%$ reported weather, the furs. |
|  | 4. SaskPower Saskatchewan Agriculture, Food and Rural Revitalization | Agriculture Agri-Food | Agricultur <br> a Agroalim | Canada Cunts unimed canada | Kipp \& Zonen |  |



| Saskatchewan Research Council Monthly Weather Summary <br> latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 36 \mathrm{~W}$ asl 497 m Saskatoon |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | April 2002 | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2001 \\ \text { VALUE } \end{gathered}$ | NORMAL OR EXTREME FOR CRS <br> 1971-2000 (1961-90) | $\begin{array}{r} \hline \text { EXTREN } \\ \text { SASKA } \\ \text { STATI } \end{array}$ |  |
|  | Average monthly maximum ( ${ }^{\circ} \mathrm{C}$ ) <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum ( ${ }^{\circ} \mathrm{C}$ ) <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No.of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} 6.4 \\ 19.3 / 13 \\ -6.3 \\ -19.1 / 03 \\ 0.1 \\ 27 \end{array}$ | $\begin{array}{r} \hline 12.1 \\ 31.5 / 28 \\ -1.7 \\ -13.2 / 15 \\ 5.2 \\ 18 \end{array}$ | $\begin{array}{r} 10.7(9.9) \\ 31.5 / 2001 / 28 \\ -1.7(-2.0) \\ -27.8 / 1979 / 01 \\ 4.5(4.0) \\ 21(20) \end{array}$ | $\begin{array}{r} 33 . \\ -28.3 / 1893 \end{array}$ | /1952/28 05\&1954/02 |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 22.2 \\ 22.2 \\ 537.4 \\ 3158.3 \\ 0.0 \\ 0.0 \end{array}$ | 82.8 <br> 387.7 <br> 3.1 | $\begin{array}{r} 61.0(54.8) \\ 63.3(55.7) \\ 405.0(420.9) \\ 3079.9(3196.9) \\ 0.3(0.2) \\ 0.3(0.2) \end{array}$ |  |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 12.0 \\ 26.3 \\ 5.0 / 23 \\ 8 \end{array}$ | $\begin{array}{r} 6.4 \\ 15.8 \\ 2.0 / 07 \\ 9 \end{array}$ | $\begin{array}{r} 23.6(20.3) \\ 71.3(75.3) \\ 24.6 / 1985 / 19 \\ 8(7) \end{array}$ |  | 2/1955/19 |
|  | Average monthly speed (km/h) <br> Peak gust (direction/speed/date) | $\begin{array}{r} 15.9 \\ \text { wsw } 74.0 / 15 \end{array}$ | $\begin{array}{r} 15.6 \\ \text { wnw66.0/25 } \end{array}$ |  | w108. | $\begin{array}{r} 18.0 \\ 1959 / 06 \end{array}$ |
|  | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> Bright Sunshine days <br> Monthly global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 223.2 \\ 53.3 \\ 28 \\ 500.1 \\ 207.9 \end{array}$ | $\begin{array}{r} 217.5 \\ 51.9 \\ 26 \\ 471.7 \\ 178.5 \end{array}$ | $\begin{array}{r} 225.2(229.4) \\ 53.8(54.9) \\ 27(27) \\ (492.2) \\ (178.5) \end{array}$ |  |  |
|  | Average grass level ${ }^{*} / 5 \mathrm{~cm}$ <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} -1.0 / 0.1 \\ 1.9 / 3.3 \\ 1.0 / 0.6 \\ 0.9 / 2.2 \end{array}$ | $\begin{aligned} & 6.0 / 1.3 \\ & 4.2 / 4.9 \\ & 2.6 / 2.0 \\ & 2.0 / 2.6 \end{aligned}$ | $\begin{array}{r} (n a / 2.8) \\ (3.2 / 3.5) \\ (2.5 / 1.2) \\ (1.2 / 2.2) \\ \hline \end{array}$ |  |  |
|  | Your Information <br> If you liked March's $6.8^{\circ} \mathrm{C}$ below normal tem hree days in the latter part of the month breakin with only $1967\left(-1.9^{\circ} \mathrm{C}\right), 1975\left(-0.1^{\circ} \mathrm{C}\right)$ and 1979 the $23^{\text {rd }}$, considered flying back south. Soil tempe ays were about a third of normal while heating for the $20^{\text {th }}$ consecutive month. August 2000 was pring fashion; as snow, rain and everything in be ccurred four times while Gale winds (63-75 kph) fom the NNW. <br> Although we grouse about the unseasonable we now. Two years earlier five deaths were attribu Hudson's Bay Company archives for York Factory Phillips, 1988. | eratures, welc minimum da $\left(2.3^{\circ} \mathrm{C}\right)$ having atures ranged degree-days the last month tween on eig occurred thrice <br> ther, April cou d to the 40 to , the factor no | me to April. T temperature older mean te fom $2.7^{\circ}$ to $0.2^{\circ}$ ere about a th that had abo days. In the These winds <br> have been w 50 cm wet sn d "Severity of | The mean temperature was 4.4 records. April 2002 was the 4 mperatures. I am sure the pelic $2^{\circ}$ below normal in the upper lev hird more than normal. Drough ve normal precipitation. Precipi atter half of the month, Near G began in the WSW shifted to <br> worse. In 1987, La Ronge was bur owfall in central Alberta. In 1757 weather froze beer in cellar." ${ }^{1}$ | C below n coldest Ap ns, returni els. Growin conditions ation came e winds (51 e NW and <br> uried under , as recor | ormal with ril at CRS ing around g degreepersisted in typical 51-62 kph) ended up <br> r 48 cm of ded in the |
|  | SaskPower Saskatchewan Agriculture, Food and Rural Revitalizatio | Agriculture Agri-Food | Agricultur | $\begin{array}{ll} \text { et } \\ \text { itaire Canada } & 2 \\ \text { Duds unimied Canad } \end{array}$ | Kipp \& Zonen |  |


| Saskatchewan Research Council Monthly Weather Summary |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | May 2002 | 2002 <br> VALUE | $\begin{gathered} 2001 \\ \text { VALUE } \end{gathered}$ | RMAL OR EXTREME FOR CRS <br> 1971-2000 (1961-90) |  |  |
|  | Average monthly maximum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No.of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} 17.7 \\ 29.0 / 28 \& 29 \\ 1.4 \\ -9.4 / 05 \\ 9.6 \\ 14 \end{array}$ | $\begin{array}{r} 20.7 \\ 31.5 / 13 \\ 5.6 \\ -1.9 / 03 \\ 13.2 \\ 3 \end{array}$ | $18.6(18.5)$ $35.0 / 1988 / 30$ $4.7(4.5)$ $-10.0 / 1967 / 02$ $11.6(11.5)$ $6(7)$ | 37.2 -12.8 | $\begin{aligned} & 1936 / 27 \\ & / 1907 / 06 \end{aligned}$ |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | 170.7 192.9 267.2 3425.5 5.9 5.9 | $\begin{array}{r} 253.2 \\ 336.6 \\ 155.2 \\ 2928.0 \\ 5.4 \\ 8.5 \end{array}$ | $\begin{array}{r} 211.6(209.0) \\ 274.9(265.4) \\ 204.4(206.9) \\ 3284.3(3436.6) \\ 7.4(7.0) \\ 7.7(7.2) \end{array}$ |  |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 0.2 \\ 26.5 \\ 0.2 / 01 \\ 1 \end{array}$ | $\begin{array}{r} 24.4 \\ 40.2 \\ 14.2 / 19 \\ 5 \end{array}$ | $\begin{array}{r} 44.3(43.7) \\ 115.6(119.0) \\ 39.9 / 1985 / 04 \\ 9(10) \end{array}$ | 51.3 | /1909/30 |
|  | Average monthly speed (km/h) Peak gust (direction/speed/date) | $\begin{array}{r} 19.0 \\ \text { w } 78.2 / 29 \end{array}$ | $\begin{array}{r} 19.5 \\ \text { ssw69.2/29 } \end{array}$ |  | sw132.0/ | $\begin{array}{r} 18.0 \\ / 1965 / 17 \end{array}$ |
|  | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> Bright Sunshine days <br> Monthly global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 324.3 \\ 66.5 \\ 31 \\ 842.3 \\ 206.2 \end{array}$ | $\begin{array}{r} 276.4 \\ 56.7 \\ 31 \\ 626.4 \\ 224.0 \end{array}$ | $\begin{array}{r} 267.1(285.7) \\ 54.8(58.7) \\ 29(29) \\ (586.3) \\ (222.2) \end{array}$ |  |  |
| \% | Average grass level ${ }^{*} / 5 \mathrm{~cm}$ <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | 11.6/8.0 9.8/10.8 6.9/4.8 3.8/3.0 | $\begin{array}{r} 16.0 / 8.9 \\ 12.1 / 13.0 \\ 9.7 / 7.1 \\ 5.5 / 3.8 \end{array}$ | $\begin{array}{r} (n a / 10.1) \\ (10.6 / 10.9) \\ (8.9 / 5.9) \\ (4.4 / 3.1) \\ \hline \end{array}$ |  |  |
|  | Your Information <br> May 2002, the $21^{\text {st }}$ consecutive month of below 964. It easily beat the 1998 previous low of 10.4 m inds creating zero visibility conditions due to blo complete a very windy month. While all temperatur 964, it was the average minimum temperature tha eflected in 40.9 below normal growing degree-day ll 7 levels. Gardeners feared it was never going to the $23^{\text {rd }}$. The only bright spot was every day had brig We think enduring a couple of dusty days is bad. ears, it caused 3 days of total darkness for a dista r years. During the following cold, rainy summer, host stories to past the time. Her effort resulted in e and crops failed. ${ }^{3}$ <br> Goble, $2002{ }^{2}$ Phillips, $1998{ }^{3}$ Lu | normal precipita <br> m. Coupled with wing dust at tim s were below set a new rec , the 62.8 abo warm up with 9 ht sunshine wit When Tamboro nce of 480 km . known as the "y the now classi tkemeyer, 2001 | n, was the dris he arid condi <br> s. 'Strong Ga mal and the of $3.3^{\circ} \mathrm{C}$ be average heatin ays more of fro 57.2 hours ab pted in 1815 he ash cloud without a su tory of Frank | May ( 0.2 mm ) ever recorde were 13 days of 'Near Ga $76-87 \mathrm{~km}$ ) westerly winds age monthly temperature the 1971-2000 normals. Th egree-days and below norm han usual and the last frost normal for the month. e most explosive volcanic e nded around the world disr r", Mary Shelley and her co in. ${ }^{2}$ In Canada, small lakes | ince CRS (51-62 km) urred on t the $5^{\text {th }}$ cold ol tempera soil temper pefully) occ <br> ion in the $p$ ng weather anions beg mained cov | opened in or greater he $29^{\text {th }}$ to dest since atures are ratures at curring on <br> past 5,000 patterns gan telling vered with |
|  | 14 SaskPower Saskatchewan Agriculture, Food and Rural Revitalization Revitalization | Agriculture Agri-Food | Agricultu Agroalim | :anada | Kipp \& Zonen |  |


| Saskatchewan Research Council Monthly Weather Summary |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | June 2002 | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2001 \\ \text { VALUE } \end{gathered}$ | RMAL OR EXTREME FOR CRS <br> 1971-2000 (1961-90) |  |  |
|  | Average monthly maximum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No.of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | 24.6 <br> 37.2/28 <br> 11.4 <br> 5.4/07 <br> 18.1 <br> 0 | $\begin{array}{r} 22.7 \\ 31.7 / 21 \\ 9.3 \\ 3.8 / 13 \\ 16.0 \\ 0 \end{array}$ | $\begin{array}{r} 22.6(22.6) \\ 41.0 / 1988 / 05 \\ 9.5(9.2) \\ -3.3 / 1967 / 06 \\ 16.0(15.9) \\ 1(0) \end{array}$ | $\begin{array}{r} 41 \\ -3.9 / 1903 \end{array}$ | /1988/05 9\&1917/02 |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | 391.7 <br> 584.6 <br> 58.4 3483.9 60.1 66.0 | 330.9 <br> 667.5 <br> 75.5 <br> 3003.5 <br> 16.4 <br> 24.9 | $\begin{array}{r} 331.5(327.3) \\ 606.4(592.7) \\ 82.8(84.0) \\ 3367.1(3520.6) \\ 22.3(21.2) \\ 30.0(28.4) \end{array}$ |  |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 54.2 \\ 80.7 \\ 16.0 / 17 \\ 9 \end{array}$ | $\begin{array}{r} 36.0 \\ 76.2 \\ 9.0 / 09 \\ 10 \end{array}$ | $\begin{array}{r} 59.5(63.6) \\ 175.1(182.6) \\ 99.4 / 1983 / 24 \\ 12(12) \end{array}$ | 99.4 | /1983/24 |
|  | Average monthly speed (km/h) Peak gust (direction/speed/date) | $\begin{array}{r} 15.3 \\ \mathrm{wnw} 73.2 / 17 \end{array}$ | $\begin{array}{r} 14.3 \\ \text { wsw } 75.1 / 25 \end{array}$ |  | s117 | $\begin{array}{r} 17.0 \\ / 1986 / 01 \end{array}$ |
|  | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> Bright Sunshine days <br> Monthly global radiation(MJ/m²) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 246.9 \\ 49.4 \\ 25 \\ 818.5 \\ 223.7 \end{array}$ | $\begin{array}{r} 245.9 \\ 49.2 \\ 30 \\ 609.3 \\ 256.9 \end{array}$ | $\begin{array}{r} 277.2(297.2) \\ 55.4(59.4) \\ 28(29) \\ (638.7) \\ (228.1) \end{array}$ |  |  |
| O | Average grass level ${ }^{*} / 5 \mathrm{~cm}$ <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} 20.6 / 14.9 \\ 16.9 / 17.6 \\ 12.8 / 9.4 \\ 7.4 / 4.8 \end{array}$ | $\begin{array}{r} 18.8 / 12.0 \\ 15.2 / 16.1 \\ 12.5 / 9.9 \\ 8.1 / 5.7 \end{array}$ | $\begin{array}{r} (n a / 15.3) \\ (15.7 / 16.2) \\ (14.0 / 10.4) \\ (8.2 / 5.2) \\ \hline \end{array}$ |  |  |
|  | Your Information <br> Even though CRS recorded 16 days with maxim he monthly mean was only $2^{\circ}$ above the 1971-2000 and crested on the $28^{\text {th }}$ with the extreme monthly maxir monthly temperature of $36.5^{\circ} \mathrm{C}$ on the $27^{\text {th }}$ recorded $1 \%$ of the current normal. Upper level soil temperat and $1.2^{\circ} \mathrm{C}$ below average. This was another 'rockswinds ( $63-75 \mathrm{~km} / \mathrm{h}$ ) occurring four times. Five of the On Sunday, June 30tr, 1912, 90 years ago, after four istory books. It is estimated the rotational winds w n incredible $80 \mathrm{~km} / \mathrm{h}$. It touched down 18 km SW of 3 km NE. Included in the 28 dead were a newly ma hat year by inadvertently missing their ship to their was The Titanic. ${ }^{2} \quad{ }^{1}$ Environment Canada, 2002c ${ }^{2}$ Anders | m temperature normal. A thr ximum tempera at the Saskato res are beginn -your-pockets' days happen ur days of unpr re between 160 Regina and aft ried couple from new home in C n, 1964 | above $25^{\circ} \mathrm{C}$, day hot spe re of $37.2^{\circ} \mathrm{C}$. Airport statio to recover fr onth with 'Ne between the edented swel nd $800 \mathrm{~km} / \mathrm{h}$; cutting a swa England. They da. The miss | ding daily record temperatur gan on the $26^{\text {th }}$ with tempera was just slightly higher than recipitation, while not above he cool spring but the lower I ale' winds (51-62 km/h) occ nd the $11^{\text {th }}$. <br> g temperatures, the Regina base 275 to 375 m wide and destruction through the cen managed to escape one di hip, on its maiden voyage, w | on the $27^{\text {th }}$ res reaching e extreme verage, wa els are bet ring thrice <br> clone roare forward sp e of the city ster earlier sunk by a | ${ }^{\text {th }}$ and $28^{\text {th }}$, <br> ng $34.4^{\circ} \mathrm{C}$ maximum <br> as close at tween $0.4^{\circ}$ and 'Gale' <br> ed into the peed 16 to $y$, lifted off in April of an iceberg. |
|  | 14 SaskPower Saskatchewan Agriculture, Food and Rural Revitalization | Agriculture Agri-Food | Agricultu Agroalim | ianada Cums himined Canadas |  <br> Zonen |  |


| Saskatchewan Research Council Monthly Weather Summary <br> latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 36 \mathrm{~W}$ asl 497 m Saskatoon |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | July 2002 | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2001 \\ \text { VALUE } \end{gathered}$ | NORMAL OR EXTREME FOR CRS 1971-2000 (1961-90) | EXTREM SASKA STATI |  |
| ¢ | Average monthly maximum ( ${ }^{\circ} \mathrm{C}$ ) <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | 27.8 $37.0 / 14$ 14.0 $6.8 / 03$ 20.9 0 | 27.6 $39.3 / 05$ 13.0 $6.7 / 04$ 20.3 0 | $24.8(25.1)$ $39.3 / 2001 / 05$ $11.5(11.5)$ $1.7 / 1967 / 02 \& 1978 / 09$ $18.2(18.3)$ $1(0)$ | 40.0/1919/17\&19 <br> -0 | 1/19\&1946/30 <br> /1918/25 |
| 号 | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 493.9 \\ 1078.5 \\ 19.0 \\ 3502.9 \\ 109.9 \\ 175.9 \end{array}$ | $\begin{array}{r} 475.7 \\ 1077.9 \\ 10.8 \\ 3503.4 \\ 83.5 \\ 175.8 \end{array}$ | $\begin{array}{r} 408.4(414.8) \\ 1014.8(1007.5) \\ 35.3(32.0) \\ 3402.4(3552.6) \\ 40.7(43.9) \\ 70.7(72.3) \end{array}$ |  |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 70.8 \\ 151.5 \\ 26.6 / 09 \\ 9 \end{array}$ | $\begin{array}{r} 48.2 \\ 124.4 \\ 19.4 / 25 \\ 11 \end{array}$ | $\begin{array}{r} 58.0(55.7) \\ 233.1(238.3) \\ 45.5 / 1968 / 29 \\ 12(11) \end{array}$ | 79.2 | /1946/03 |
| $\begin{array}{\|l} 20 \\ 3 \\ 3 \end{array}$ | Average monthly speed (km/h) <br> Peak gust (direction/speed/date) | $\begin{array}{r} 16.0 \\ \text { wnw } 75.6 / 05 \end{array}$ | $\begin{array}{r} 14.6 \\ \text { wnw } 84.8 / 28 \end{array}$ |  | E113 | $\begin{array}{r} 16.0 \\ 0 / 1955 / 05 \end{array}$ |
| z | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> Bright Sunshine days <br> Monthly global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 314.1 \\ 62.6 \\ 30 \\ 700.8 \\ 193.9 \end{array}$ | $\begin{array}{r} 282.5 \\ 56.3 \\ 31 \\ 631.7 \\ 212.5 \end{array}$ | $\begin{array}{r} 305.7(329.1) \\ 60.9(65.8) \\ 30(30) \\ (633.5) \\ (216.5) \end{array}$ |  |  |
| \% | Average grass level ${ }^{*} / 5 \mathrm{~cm}$ <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} 21.5 / 15.7 \\ 19.6 / 20.7 \\ 16.7 / 13.0 \\ 10.5 / 6.9 \end{array}$ | $\begin{array}{r} 23.2 / 15.3 \\ 18.9 / 19.7 \\ 15.7 / 12.5 \\ 10.5 / 7.4 \end{array}$ | $\begin{array}{r} \mathrm{na} /(17.6) \\ (18.0) /(18.8) \\ (16.8) /(13.2) \\ (11.1) /(7.5) \end{array}$ |  |  |
|  | Your Information <br> After 22 months of below normal precipitation The majority of the rain did not come as drips $6^{\text {th }}(13.8 \mathrm{~mm})$. Even with the above normal r etter than last year's cumulative total to July $30^{\circ} \mathrm{C}$, with five days breaking or tying maxim ast year on the $5^{\text {th }}$ was not broken. The extr mperatures. <br> It is not only farmers that have felt the drought. $4 \%$ this year due mainly to the dried up sloug as seen the duck population drop by $45 \%$ fr and seasonal ponds, are down 63\%. Some d raised that area's duck population by $70 \%$. | n, July 2002 and drabs but infall for the of $53.4 \%$. Al m daily recor me cooling <br> The duck p hs where the m last year. ck species flew elieff, 2002. | roke out of the as three gully onth, the yea ng with being s. The extre gree-days (b <br> pulation in C ducks live, fe ome species w over the pr | he rut with 12.8 mm of abov -washers on the $9^{\text {th }}(26.6 \mathrm{~m}$ rly total is only $65 \%$ of norm wet, July was hot. Twelve me maximum temperature base $24^{\circ}$ ), 15.7 above norm <br> anada and the northern Unit ed, and breed. The south , like the northern pintail w rairies to the boreal forest to | e normal pre m), $17^{\text {th }}$ (22.0 mal which is, days regist for July of 3 mal, reflected <br> ed States has part of Sask which favour $t$ find nesting | cipitation. mm) and however, ered over $9.3^{\circ} \mathrm{C}$ set the high <br> s dropped atchewan emporary sites and |
|  | 4 SaskPower Saskatchewan and Rural Revitalization | Agriculture Agri-Food | Agricultur |  | Kipp \& Zonen |  |


| Saskatchewan Research Council Monthly Weather Summary <br> latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 36 \mathrm{~W}$ asl 497 m Saskatoon |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | August 2002 | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2001 \\ \text { VALUE } \end{gathered}$ | RMAL OR EXTREME FOR CRS <br> 1971-2000 (1961-90) | $\begin{array}{r} \text { EXTREM } \\ \text { SASKA } \\ \text { STATIC } \end{array}$ |  |
| ¢ | Average monthly maximum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average $\left({ }^{\circ} \mathrm{C}\right)$ <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | 23.4 $32.8 / 24$ 11.2 $2.6 / 02 \& 04$ 17.3 0 | $\begin{array}{r} 29.2 \\ 37.8 / 03 \\ 12.7 \\ 5.9 / 12 \\ 21.0 \\ 0 \end{array}$ | $\begin{array}{r} 24.6(24.3) \\ 39.7 / 1998 / 06 \\ 10.4(10.1) \\ -2.8 / 1976 / 28 \\ 17.5(17.2) \\ 1(0) \end{array}$ | $\begin{array}{r} 39.7 / \\ -2.8 / 1976 / 2 \end{array}$ | 1998/06 28\&1901/23 |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 382.8 \\ 1461.3 \\ 65.8 \\ 3568.7 \\ 45.6 \\ 221.4 \end{array}$ | $\begin{array}{r} 495.1 \\ 1638.3 \\ 8.9 \\ 3023.2 \\ 101.0 \\ 209.4 \end{array}$ | $\begin{array}{r} 387.8(379.6) \\ 1402.6(1387.1) \\ 57.7(62.4) \\ 3460.1(3615.0) \\ 42.5(39.0) \\ 113.2(111.3) \end{array}$ |  |  |
| 年 | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 81.8 \\ 233.3 \\ 18.0 / 11 \\ 18 \end{array}$ | $\begin{array}{r} 7.0 \\ 131.4 \\ 6.0 / 14 \\ 2 \end{array}$ | $\begin{array}{r} 36.2(35.3) \\ 269.3(273.6) \\ 33.8 / 1998 / 17 \\ 10(9) \end{array}$ | 84.3/ | 1945/03 |
| $\begin{array}{\|l} \hline 0 \\ 2 \\ 3 \end{array}$ | Average monthly speed (km/h) Peak gust (direction/speed/date) | $\begin{array}{r} 12.5 \\ \mathrm{E} 62.2 / 25 \end{array}$ | $\begin{array}{r} 14.0 \\ \text { Nw } 61.6 / 14 \end{array}$ |  | w151. | $\begin{array}{r} 16.0 \\ 1967 / 14 \end{array}$ |
| 2 | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> Bright Sunshine days <br> Monthly global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 221.9 \\ 49.0 \\ 30 \\ 514.8 \\ 187.4 \end{array}$ | $\begin{array}{r} 332 / 4 \\ 73 / 5 \\ 31 \\ 601.8 \\ 155.7 \end{array}$ | $\begin{array}{r} 280.8(295.2) \\ 62.0(65.2) \\ 30(30) \\ (529.0) \\ (185.6) \end{array}$ |  |  |
| \% | Average grass level ${ }^{\star} / 5 \mathrm{~cm}$ <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} 16.2 / 10.6 \\ 15.0 / 16.3 \\ 14.5 / 12.9 \\ 11.6 / 8.8 \end{array}$ | $\begin{array}{r} 23.5 / 16.1 \\ 19.7 / 20.6 \\ 17.1 / 14.3 \\ 12.3 / 9.1 \end{array}$ | $\begin{array}{r} (\mathrm{na}) /(16.4) \\ (16.8) /(17.9) \\ (16.8) /(14.1) \\ (12.4) /(9.1) \end{array}$ |  |  |
|  | Your Information <br> August, a month of contrasts, began with reco mperatures over $30^{\circ} \mathrm{C}$ on the $24^{\text {th }}, 25^{\text {th }}$ and $28^{\text {th }}$. Mo ormal) evened out to a monthly average near norm eference Station (CRS) had received in excess of alue for August. Two daily records were set; 18.0 m ased out the 1982 record of 6.2 mm . With the abun normal. All days except one received some bright ss than normal. Soil temperatures at all levels cont Since 1993, CRS has recorded from 1 to 29 abo innipeg area, Alexander Ross wrote of the growing appened to dampen our hopes till the $19^{\text {th }}$ of Augu ay growing season; 69 days less than modern-day sastrous for the new community. This year, for an Phillips. 2001 | d daily minimu thly average m l. Rainfall cont the monthly n on the $11^{\text {th }}$ ea ance of rain fall unshine but w nued to be we ve normal day g season "On st when ...fros normals. ${ }^{1}$ As bove average | temperature ximum $\left(1.2^{\circ} \mathrm{C}\right.$ ued to be abo mal and by m $y$ toppled the ing on twice as the increased elow seasona or the frost-fre $7^{\text {th }}$ of June blasted our pr re were no 's wing season | $6^{\circ} \mathrm{C}$ on the $2^{\text {nd }}$ and $4^{\text {th }}$, and $w$ normal) and minimum tem verage to the relief of many. s end the total was 81.8 m ecord of 5.8 mm set in 1982 ny days as usual, the yearly activity, the total monthly b ues, especially in the upper eason. During the early day ad a heavy fall of snow.. cts by the destroying the markets', a complete crop can occur no earlier than | losed with ratures (0.8 the $10^{\text {th }}$, th 2.3 times th d 7.2 mm al increase ht sunshine vels. <br> f the Red R still nothin s." This mad ure would h ptember 20 | maximum <br> $8^{\circ} \mathrm{C}$ above <br> Climate <br> he normal <br> on the $30^{\text {th }}$ <br> to $86.6 \%$ <br> was $21 \%$ <br> River, now ing serious ade a 54have been |
|  | 14 SaskPower <br> Saskatchewan Agriculture, F and Rural and Rural Revitalization | Agriculture Agri-Food | Agricultur da Agroalim |  |  <br> Zonen |  |


| Saskatchewan Research Council Monthly Weather Summary |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | September 2002 | 2002 <br> VALUE | $\begin{gathered} 2001 \\ \text { VALUE } \end{gathered}$ | NORMAL OR EXTREME FOR CRS <br> 1971-2000 (1961-90) | $\begin{array}{r} \text { EXTREM } \\ \text { SASKAT } \\ \text { STATIC } \end{array}$ |  |
|  | Average monthly maximum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No.of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | 18.4 <br> 31.3/16 6.2 <br> -7.1/27 <br> 12.4 <br> 5 | 22.4 <br> 33.2/25 7.1 <br> 0.5/12 <br> 14.8 <br> 0 | $18.1(17.7)$ $35.6 / 1978 / 04$ $4.9(4.8)$ $-7.8 / 1974 / 30$ $11.6(11.3)$ $6(5)$ | 35.6/ | /1978/ <br> /1908/ |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 227.0 \\ 1688.3 \\ 175.5 \\ 3744.2 \\ 6.4 \\ 227.9 \end{array}$ | $\begin{array}{r} 294.0 \\ 1932.3 \\ 105.8 \\ 3129.0 \\ 9.8 \\ 219.2 \end{array}$ | $203.5(196.9)$ $1606.1(1584.2)$ $198.9(206.6)$ $3659.0(3821.2)$ $5.8(6.2)$ $119.0(117.5)$ |  |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 58.2 \\ 291.5 \\ 32.4 / 30 \\ 9 \end{array}$ | $\begin{array}{r} 11.4 \\ 142.8 \\ 6.4 / 19 \\ 8 \end{array}$ | $\begin{array}{r} 29.4(32.9) \\ 298.7(307.3) \\ 29.6 / 1980 / 03 \\ 8(9) \end{array}$ | 44.2 | /1931/1 |
|  | Average monthly speed (km/h) Peak gust (direction/speed/date) | $\begin{array}{r} 15.1 \\ \mathrm{Nw} 63.2 / 19 \end{array}$ | $\begin{array}{r} 14.5 \\ \text { w56.8/02 } \end{array}$ |  |  | $\begin{array}{r} 17 \\ 3 / 1967 / 2 \end{array}$ |
|  | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> Bright Sunshine days <br> Monthly global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 206.0 \\ 54.3 \\ 25 \\ 359.9 \\ 124.2 \end{array}$ | $\begin{array}{r} 265.3 \\ 70.0 \\ 30 \\ 415.1 \\ 118.8 \end{array}$ | $\begin{array}{r} 186.0(188.0) \\ 49.1(49.6) \\ 26(26) \\ (351.8) \\ (127.6) \end{array}$ |  |  |
|  | Average grass level ${ }^{*} / 5 \mathrm{~cm}$ <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} 10.2 / 5.9 \\ 11.2 / 12.7 \\ 12.8 / 12.4 \\ 11.7 / 9.6 \end{array}$ | $\begin{aligned} & 11.8 / 11.5 \\ & 14.4 / 15.9 \\ & 14.3 / 13.3 \\ & 12.4 / 10.2 \end{aligned}$ | $\begin{array}{r} \mathrm{na} /(10.5) \\ (11.2) /(12.5) \\ (13.3) /(12.5) \\ (11.9) /(9.9) \\ \hline \end{array}$ |  |  |
|  | Your Information <br> The latter half of the old saw 'September during the last days of September when a reco not pose a flood hazard. Without this last min instead, by midnight on September $30^{\text {th }}$, it wa yearly cumulative total is now just 7.2 mm belo emperature and radiation elements near their season at 122 days; four days above normal. When Europe and Britain had more agrarian estivals of fun, feasting, and thanksgiving know collect rents. These festivals usually took place ept alive in the New World by the annual fall | dries up ditc rd rainfall of ute drenching 28.8 mm or normal. Exc normal values. <br> societies, the wn as 'Harve in Septemb estival celebr | es or break 2.4 mm occu the precipit early twice ding the rain The first fros <br> conclusion Home'. It w around the ions of Thank | down bridges'1 had the po ed. Luckily, it was spread ov ion would have been below ove normal. With the extra September was generally a occurred on September 23 <br> the harvest each autumn also a time to hold electi me of the autumnal equino sgiving. | ility of be 24 hours monthly ptember r verage mo pping the <br> marked pay work The tradition | eing true s and did y norma rain, the month with growing <br> by grea rkers and itions are |
|  | 14 SaskPower Saskatchewan Agriculture, Food and Rural Revitalization $\qquad$ | Agriculture Agri-Food | Agricultur | aire Canada $\sum_{\text {Ducss unimined Canada }}^{2}$ | Kipp \& Zonen |  |

[^3]| Saskatchewan Research Council Monthly Weather Summary <br> latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 36 \mathrm{~W}$ asl 497 m Saskatoon |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | October 2002 | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2001 \\ \text { VALUE } \end{gathered}$ | RMAL OR EXTREME FOR CRS 1971-2000 (1961-90) | $\begin{array}{r} \hline \text { EXTREN } \\ \text { SASKA } \\ \text { STATI } \\ \hline \end{array}$ |  |
|  | Average monthly maximum ( ${ }^{\circ} \mathrm{C}$ ) <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average $\left({ }^{\circ} \mathrm{C}\right)$ <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} \hline 4.0 \\ 17.3 / 09 \\ -4.7 \\ -13.5 / 29 \\ -0.3 \\ 25 \end{array}$ |  | $\begin{array}{r} 10.8(10.9) \\ 28.5 / 1984 / 08 \\ -1.3(-1.3) \\ -21.5 / 1984 / 30 \& 31 \\ 4.8(4.8) \\ 20(19) \end{array}$ | 32 -25 | $\begin{aligned} & \text { 2/1943/05 } \\ & \text { b/1919/26 } \end{aligned}$ |
| DEGREE-DAYS | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | 11.5 1699.8 568.1 4312.3 0.0 227.9 | $\begin{array}{r} 39.7 \\ 1972.0 \\ 451.9 \\ 3580.9 \\ 0.0 \\ 219.2 \end{array}$ | $\begin{array}{r} 63.7(61.5) \\ 1669.8(1645.7) \\ 410.2(406.5) \\ 4069.2(4227.7 \\ 0.1(0.0) \\ 119.1(117.5) \end{array}$ |  |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 10.9 \\ 302.4 \\ 3.0 / 17 \\ 13 \end{array}$ | $\begin{array}{r} 8.3 \\ 151.1 \\ 4.5 / 22 \\ 9 \end{array}$ | $\begin{array}{r} 16.4(17.5) \\ 315.1(324.0) \\ 36.7 / 1984 / 16 \\ 6(6) \end{array}$ | 41.7 | /1969/03 |
| $\frac{2}{3}$ | Average monthly speed (km/h) Peak gust (direction/speed/date) | $\begin{array}{r} 12.7 \\ \text { ssw56.4/02 } \end{array}$ | $\begin{array}{r} 13.9 \\ \mathrm{w} 70.8 / 17 \end{array}$ |  |  | $\begin{array}{r} 17.0 \\ 8 / 1967 / 16 \end{array}$ |
| z | Monthly bright sunshine (hours) \% possible bright sunshine Bright Sunshine days <br> Monthly global radiation(MJ/m²) Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 127.2 \\ 38.6 \\ 26 \\ 216.8 \\ 127.6 \end{array}$ | $\begin{array}{r} 1145.3 \\ 44.2 \\ 26 \\ 223.5 \\ 110.4 \end{array}$ | $\begin{array}{r} 157.9(160.7) \\ 47.9(48.8) \\ 27(27) \\ (239.1) \\ (92.6) \end{array}$ |  |  |
| \% | Average grass level ${ }^{*} / 5 \mathrm{~cm}$ <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} -4.3 /-1.6 \\ 1.9 / 3.4 \\ 5.8 / 8.0 \\ 9.0 / 9.2 \end{array}$ | $\begin{array}{r} -1.5 / 3.3 \\ 5.4 / 7.4 \\ 8.7 / 10.2 \\ 10.6 / 10.1 \end{array}$ | na/(4.1) <br> (4.5/6.0) <br> (8.0/9.2) <br> (9.7/9.5) |  |  |
|  | Your Information <br> We can be thankful that October winds we emperatures. New daily lows were set on the 1 maximum temperatures rose only once above th or the daily minimum. The month was the coldes maximum, minimum and average temperatures. month. It was the $6^{\text {th }}$ dullest October since the sta the 20 cm level only half a degree above freezing This month may have been cold but at least fo 1958 November game held in Victoria, B.C., had the ball and where the game was. When the someone had stolen the goal posts. ${ }^{2}$ <br> Power outage from Oct.4-10 \& Oct. 26-30. Bright Sunshine missin | e very light and \& $20^{\text {th }}$ with $t$ normal mean October the s Precipitation wa on began reco All soil tempe tball players in was so foggy, fficials finally <br> data supplied by Un | did not exa peratures of aily values a tion has expe below avera ing sunshine ures are below Saskatoon ha layers playe spended the | ate the near record and and $-8.9^{\circ} \mathrm{C}$. From Octob n four occasions failed to ced with record low month with the majority falling duri 966. Frost was evident at th ormal for this time of year. een able to see the ball to de-and-go-seek and had to e at the end of the $3^{\text {rd }}$ qua <br> Kernen Farm $\quad{ }^{2}$ Phillips, 2001 | cord minim $15^{\text {th }}$ to the e above th values set the latter 10 cm soil <br> ay the gam ask each er, it was dis | um daily $31^{\text {st }}$, the e normal for mean half of the level with <br> e. During other who scovered |
|  | 1 SaskPower Saskatchewan Agriculture, and Rural Revitalization | Agriculture Agri-Food | Agricultu Agroalim | Ianada |  <br> Zonen |  |


| Saskatchewan Research Council Monthly Weather Summary <br> latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 36 \mathrm{~W}$ asl 497 m Saskatoon |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | November 2002 | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2001 \\ \text { VALUE } \end{gathered}$ | RMAL OR EXTREME FOR CRS <br> 1971-2000 (1961-90) | $\begin{array}{r} \hline \text { EXTREM } \\ \text { SASKA } \\ \text { STATI } \\ \hline \end{array}$ |  |
|  | Average monthly maximum ( ${ }^{\circ} \mathrm{C}$ ) <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No.of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} 0.9 \\ 10.1 / 20 \\ -8.3 \\ -15.7 / 24 \\ -3.7 \\ 28 \end{array}$ | $\begin{array}{r} \hline 3.9 \\ 16.3 / 04 \\ -5.2 \\ -14.2 / 26 \\ -0.7 \\ 27 \end{array}$ | $\begin{array}{r} \hline-1.4(-1.5) \\ 19.4 / 1975 / 04 \\ -10.3(-10.6) \\ -33.5 / 1985 / 24 \\ -5.9(-6.0) \\ 29(29) \end{array}$ | $\begin{gathered} 21.7 \\ -39.4 \end{gathered}$ | $\begin{aligned} & 1903 / 03 \\ & 1893 / 30 \end{aligned}$ |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 0.1 \\ 1699.9 \\ 650.8 \\ 4963.1 \\ 0.0 \\ 227.9 \end{array}$ | $\begin{array}{r} 8.7 \\ 1980.7 \\ 560.6 \\ 4141.5 \\ 0.0 \\ 219.2 \end{array}$ | $\begin{array}{r} 2.6(2.7) \\ 1672.4(1648.4) \\ 715.8(721.5) \\ 4785.0(4949.2) \\ 0.0(0.0) \\ 119.1(117.5) \end{array}$ |  |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 3.7 \\ 306.1 \\ 1.4 / 08 \\ 7 \end{array}$ | $\begin{array}{r} 8.8 \\ 159.9 \\ 3.4 / 08 \\ 7 \end{array}$ | $\begin{array}{r} 14.8(15.5) \\ 329.9(339.5) \\ 19.3 / 1978 / 04 \\ 8(8) \end{array}$ | 27.9 | /1938/01 |
| $\begin{array}{\|c} \hline 0 \\ 2 \\ 3 \end{array}$ | Average monthly speed (km/h) Peak gust (direction/speed/date) | $\begin{array}{r} 13.9 \\ \mathrm{Nw} 72.8 / 22 \end{array}$ | $\begin{array}{r} 13.6 \\ \text { Nw52.6/01 } \end{array}$ |  | w100. | $\begin{array}{r} 16.0 \\ / 1976 / 17 \end{array}$ |
|  | Monthly bright sunshine (hours) <br> \% possible bright sunshine Bright Sunshine days <br> Monthly global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 95.4 \\ 36.1 \\ 23 \\ 114.7 \\ 64.5 \end{array}$ | $\begin{array}{r} 103.6 \\ 39.3 \\ 20 \\ 107.4 \\ 57.4 \end{array}$ | $\begin{array}{r} 98.0(101.2) \\ 37.1(38.3) \\ 22(22) \\ (123.7) \\ (73.6) \end{array}$ |  |  |
| \% | Average grass level ${ }^{*} / 5 \mathrm{~cm}$ <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} -9.8 /-4.0 \\ -2.3 /-0.9 \\ 1.3 / 4.4 \\ 6.0 / 7.6 \end{array}$ | $\begin{array}{r} -7.1 /-1.3 \\ 0.5 / 2.3 \\ 4.1 / 6.6 \\ 7.8 / 8.8 \end{array}$ | $\begin{array}{r} \mathrm{na} /-2.2 \\ -1.7 /-0.5 \\ 2.8 / 5.4 \\ 6.8 / 8.1 \end{array}$ |  |  |
|  | Your Information <br> The unusually warm November allowed unseas of the leaves and harvesting the remainder of th October had put an end to such chores. Maximum of the month including the extreme monthly maxi of the warm temperatures, the heating degree-day f only 3.6 mm . To reach the annual normal pre usual amount to make up the shortfall. 'Near Ga ittle reported damage. <br> Unlike the final week's wind, a fierce 1999 Winds with gusts to $113 \mathrm{~km} / \mathrm{h}$ and sustained rec pedestrian crossing Portage Avenue even had h | asonable activ crops much temperatures num of $10.1^{\circ} \mathrm{C}$ s were $9 \%$ le ipitation amou and 'Gale' fo <br> wind storm exp rd wind speed glasses blow | es to continu the disgust limbed above nd a new da than normal , December e winds roar <br> rienced by W of $87 \mathrm{~km} / \mathrm{h}$, off her face. | uch as washing outside wi me and the pleasure of oth ezing on 19 occasions, 13 maximum of $9.6^{\circ} \mathrm{C}$ for the 2 ecipitation was minimal with ecipitation will have to be hrough the area during the <br> peg residents did cause dhrough the city heavily | ows, rakin rs who ha mes after th As a con a total acc ore than doun ast week but <br> nsiderable amaging r | g the last d thought he middle sequence umulation ouble the ut caused <br> damage. oofs. One |
|  | 14 SaskPower Agriculture, Food and Rural | Agriculture Agri-Food | Agricultur <br> a Agroalime |  | Kipp \& Zonen |  |

[^4]| Saskatchewan Research Council Monthly Weather Summary <br> latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 36 \mathrm{~W}$ asl 497 m Saskatoon |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | December 2002 | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2001 \\ \text { VALUE } \end{gathered}$ | NORMAL OR EXTREME FOR CRS <br> 1971-2000 (1961-90) | $\begin{array}{r} \text { EXTREM } \\ \text { SASKA } \\ \text { STATI } \end{array}$ |  |
|  | Average monthly maximum ( ${ }^{\circ} \mathrm{C}$ ) <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No.of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} \hline-3.5 \\ 5.5 / 13 \\ -11.9 \\ -27.2 / 03 \\ -7.7 \\ 31 \end{array}$ | $\begin{array}{r} \hline-6.7 \\ 6.3 / 17 \\ -16.6 \\ -24.0 / 06 \\ -11.7 \\ 31 \end{array}$ | $\begin{array}{r} \hline-9.0(-9.8) \\ 9.5 / 1987 / 07 \\ -18.6(-19.3) \\ -42.2 / 1973 / 31 \\ -13.9(-14.5) \\ 31(31) \end{array}$ | 14.4 -43.9 | /1939/05 <br> /1892/22 |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 0.0 \\ 1699.9 \\ 797.8 \\ 5760.9 \\ 0.0 \\ 227.9 \end{array}$ | $\begin{array}{r} 0.0 \\ 1980.7 \\ 921.1 \\ 5062.6 \\ 0.0 \\ 219.2 \end{array}$ | $\begin{array}{r} 0.1(0.0) \\ 1672.5(1648.4) \\ 987.7(1004.8) \\ 5797.7(5954.0) \\ 0.0(0.0) \\ 119.1(117.5) \end{array}$ |  |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 13.9 \\ 320.0 \\ 9.5 / 29 \\ 11 \end{array}$ | $\begin{array}{r} 5.9 \\ 165.8 \\ 3.4 \\ 7 \end{array}$ | $\begin{array}{r} 18.3(21.3) \\ 348.2(360.8) \\ 14.5 / 1973 / 23 \\ 11(12) \end{array}$ | 28.4 | /1936/02 |
|  | Average monthly speed (km/h) Peak gust (direction/speed/date) | $\begin{array}{r} 13.9 \\ \text { SE54.8/16 } \end{array}$ | $\begin{array}{r} 13.3 \\ \text { wnw58.6/17 } \end{array}$ |  |  | $\begin{array}{r} 16.0 \\ / 1955 / 12 \end{array}$ |
|  | Monthly bright sunshine (hours) <br> \% possible bright sunshine Bright Sunshine days <br> Monthly global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 89.3 \\ 36.8 \\ 23 \\ 91.2 \\ 47.9 \end{array}$ | $\begin{array}{r} 102.3 \\ 42.3 \\ 24 \\ 96.3 \\ 50.1 \end{array}$ | $\begin{array}{r} 85.4(83.7) \\ 35.2(34.5) \\ 23(23) \\ (95.2) \\ (54.3) \end{array}$ |  |  |
|  | Average grass level ${ }^{*} / 5 \mathrm{~cm}$ <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} -13.2 /-5.6 \\ -4.5 /-3.1 \\ -1.3 / 1.9 \\ 3.7 / 6.0 \end{array}$ | $\begin{array}{r} -18.2 /-7.0 \\ -5.9 /-3.5 \\ -0.8 / 3.1 \\ 5.0 / 7.2 \end{array}$ | $\begin{array}{r} \mathrm{na} /(-7.1) \\ (-6.5 /-5.5) \\ (-1.6 / 1.9) \\ (3.9 / 6.3) \\ \hline \end{array}$ |  |  |
|  | Your Information <br> With an average temperature of $-7.7^{\circ}\left(6.2^{\circ}\right.$ ears $1974\left(-6.9^{\circ}\right)$, $1987\left(-7.4^{\circ}\right)$, $1997\left(-4.5^{\circ}\right)$, bove $0^{\circ} \mathrm{C}$. On the $15^{\text {th }}$, even the mean was ecorded, the month was never really cold. O etween $0^{\circ}$ and $-10^{\circ} \mathrm{C}$. Grateful home owners was not until the latter half of the month that w round. By the $31^{\text {st }}$, due to 9.5 mm snowfall on <br> Christmas on the Prairies brings to mind Winnipeg or Saskatoon, your chances to expe 94\% chance while Calgarians, at a $63 \%$ ch anadian Christmas other than white, your be | above norm and 1999 bove $0^{\circ} \mathrm{C}$. ly five days saw 190 les began to ex he $29^{\text {th }}, 14 \mathrm{c}$ sparkling ba ience a "Cou ance, keep t destination | December <br> $0^{\circ}$ ) were war cept for the d minimum heating degr rience snow had built up of snow er and Ives" ir fingers cros ould be Van | was the $5^{\text {th }}$ warmest at CRS mer. Ten days registered maxi $3^{\text {rd }}$ when a minimum temper emperatures less than $-20^{\circ}$ e-days due to the above no By Christmas, only 4 cm had - enough to go cross country d trees covered in white ho Christmas are 100\%. Regin ossed during December. Fo ouver at 6\% or Victoria at 5 | ce 1963. mum temp re of -27. h 13 days al temper ccumulate kiing. frost. If you esidents o hose who | Only the ratures $2^{\circ} \mathrm{C}$ was ranging tures. It d on the <br> live in aly have prefer a |
|  | 14 SaskPower $\square$ Saskatchewan and Rural Revitalizatio | Agriculture Agri-Food | Agricultu Agroalim | aire Canada |  <br> Zonen |  |

## INSTRUMENTS USED AT SASKATOON SRC CRS AND GLOSSARY OF TERMS

(Unless otherwise stated, source for definitions of terms is Environment Canada, 1978)
BEAUFORT WIND SCALE was developed by Admiral Sir Francis Beaufort in 1805 and adopted by the British Navy in 1838. It consisted of 13 degrees of wind strength, from calm to hurricane, based upon the effects of various wind strengths upon the amount of canvas carried by the fully rigged frigates of the period. Over the years it has been modified as needed and in 1946 the scale values (Force Numbers) were defined by ranges of wind speed as measured at a height of 10 meters above the surface. In effect, this transformed the 'Beaufort Wind Force Scale' into the 'Beaufort Wind Speed Scale'. This scale is the current standard scale for visual observations of the wind (Heidorn, 1998).

BRIGHT SUNSHINE is the unobstructed direct radiation from the sun, as opposed to the shading of a location by clouds or by other atmospheric obstructions.
Number of Days is defined as the total number of days when at least 0.1 of an hour of bright sunshine was recorded.
Percentage Possible refers to the ratio of measured bright sunshine hours to the total possible daylight hours in a given period, expressed as a percentage.
Possible daylight hours are taken from the sunrise/set tables provided by the National Research Council of Canada, Herzberg Institute of Astrophysics, Victoria, BC.
Total is the sum of the daily bright sunshine values in hours and tenths of hours as measured by an automated sunshine recorder using voltaic cells.

DEGREE-DAY is an index for various temperature related calculations
Cooling (CDD) is the cooling requirement to achieve a stipulated comfort value in an indoor environment. For most purposes, a temperature of greater than $18^{\circ} \mathrm{C}$ is considered uncomfortable and supplementary cooling is required. On a specific day, the amount by which $18^{\circ} \mathrm{C}$ is less than the daily average temperature defines the number of cooling degree-days for that day.
Mathematically:
$\mathrm{CDD}=\left(\mathrm{T}-18^{\circ} \mathrm{C}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$ if T is equal to or less than $18^{\circ} \mathrm{C}, \mathrm{CDD}=0$.
Monthly and annual values of CDD are obtained by summing daily values.
Growing (GDD) is the growing requirement in order for plant growth to proceed. The air temperature must exceed a critical value appropriate to the plant species in question. For many members of the grass family, including most commercial cereals grown on the prairies, a base temperature of $5.0^{\circ} \mathrm{C}$ has been established. On a specified day, the difference between the daily average temperature and the $5.0^{\circ} \mathrm{C}$ base temperature defines the number of growing degree-days.
Mathematically:
GDD $=\left(\mathrm{T}-5.0^{\circ} \mathrm{C}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$ if T is equal to or less than $5.0^{\circ} \mathrm{C}, \mathrm{GDD}=0$.
Daily GDD values are summed to provide totals for the appropriate month, growing season or year.
Heating (HDD) is the heating requirement to achieve a stipulated comfort value in an indoor environment. For most purposes, a temperature of less than $18^{\circ} \mathrm{C}$ is considered uncomfortable and supplementary heating is required. On a specific day, the amount by which $18^{\circ} \mathrm{C}$ exceeds the daily average temperature defines the number of heating degree-days for that day.
Mathematically:
$\operatorname{HDD}=\left(18^{\circ} \mathrm{C}-\mathrm{T}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$ if T is equal to or greater than $18^{\circ} \mathrm{C}, \mathrm{HDD}=0$.
Monthly and annual values of HDD are obtained by summing daily values.
EXTREME is the highest or lowest value of a particular element recorded during the period in question.

EXTREME ALL YEARS Temporal comparisons at a point are also of value in some types of climatic studies. Therefore, it is desirable to produce the maximum length of reliable climatic record to carry out studies over a period of time. Data are drawn from the following data sets:
Saskatoon, SRC:1963 to present
Saskatoon, University of Saskatchewan:1916 to 1963
Saskatoon, City:1892 to present
Station locations, exposures and measurement procedures were subject to change during this time period. Data are not adjusted and users are cautioned accordingly.

FROST is recorded on each occasion when the daily minimum temperature is equal to or less than $0^{\circ} \mathrm{C}$.
NORMAL VALUE (1971-2000) In climatology it is often useful to make spatial comparisons of particular element values over a common time period. At an interior continental site such as Saskatoon, a period of 30 years is required to produce statistically stable estimates of the more variable elements. To facilitate spatial comparisons, the World Meteorological Organization recommends the standard normal (average) period of thirty years. The current normal period for data analysis is from January 1st, 1971 to December 31st, 2000. Data derived from CRS conform to this standard, except where noted. The normals for CRS have been calculated using the data collected during this standard period. Where gaps existed, data from the nearest climate station were used and referenced as to being used.

## PRECIPITATION

Day is recorded on occasions when the amount of precipitation in a 24-hour period equals or exceeds 0.2 mm water. An asterisk $\left(^{*}\right.$ ) appearing in the average column denotes the occurrence of measurable precipitation on one or more occasions, and that the calculated 30-year average amounts to less than a trace. The so-called climatological day, beginning at $9 \mathrm{a} . \mathrm{m}$. standard time on the date of reference and ending at 9 a.m. the next morning, was employed in record keeping up to January 1994. On February 1, 1994, after consultation with Environment Canada, record keeping was changed to the 24 -hour period of 0000 hours -2400 hours to conform to their reporting of climatological statistics.
Total is the sum of the daily recorded precipitation. The snowfall component of precipitation is recorded as an equivalent amount of liquid water. For particulars on precipitation measurement procedures and instruments, the reader is referred to the Environment Canada publication "Manual of Climatological Observation's", 2nd Ed., January, 1978. The notation "T" refers to a trace of precipitation (less than 0.2 mm water equivalent). As of August 7, 1993, total precipitation was measured using the Belfort weighing gauge for the winter season and the tipping bucket during frost-free period.

SOIL TEMPERATURE under a short grass surface with normal snow accumulation, is measured according to procedures outlined in the Environment Canada publication "Soil Temperature" January 1, 1976. Depths below surface at which soil temperature measurements are made are: $5 \mathrm{~cm}, 10 \mathrm{~cm}, 20 \mathrm{~cm}, 50 \mathrm{~cm}, 100 \mathrm{~cm}, 150 \mathrm{~cm}$ and 300 cm . Since soil temperature is affected by profile structure and water content, extrapolation of the measured data is difficult.

## SOLAR RADIATION

Diffuse - Total is radiation reaching the earth's surface after having been scattered from the direct solar beam. The instrument used is an Eppley pyranometer with a shade ring (See SOLAR RADIATION-Global- Total).
Global - Total is the sum of the direct solar and diffuse radiation during the period in question. Measurements are carried out on a horizontal surface near ground level and integrated over the whole celestial dome, summing the diffuse and direct components of the solar beam. The temperature-compensated Eppley pyranometer is used. The standard metric unit of measurement is the megajoule per square metre ( $\mathrm{MJ} / \mathrm{m}^{2}$ ). (To facilitate comparison with past years' data: $1.0 \mathrm{MJ} / \mathrm{m}^{2}=23.895$ langleys). Comparison is provided with a provisional average based on 16 years of data (1975-1990).

SPELLS - Temperature spells are defined as a sequence of days when the daily maximum temperature is higher than or equal to $30^{\circ} \mathrm{C}$ (hot spell) or the daily minimum temperature is lower than or equal to $-30^{\circ} \mathrm{C}$ (cold spell).

SUNRISE/SUNSET times have been included in this report. They have been acquired from the National Research Council, Canada, Herzberg Institute of Astrophysics.

## TEMPERATURE

Average Annual is the average of the daily average temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ for one year.
Average Daily is defined as the arithmetic mean of the daily maximum temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ and the daily minimum temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ for the day in question.
Average Maximum is the average of the daily maximum temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ average over the appropriate time periods. For details concerning measurement procedures, the reader is referred to the Environment Canada publication, "Manual of Climatological Observations", 2nd Ed., January, 1978.
Average Minimum is the average of the daily minimum temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ averaged over the appropriate time periods. Refer to TEMPERATURE-Average Maximum concerning measurement procedures.
Average Monthly is the average of the daily average temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ for the month under consideration.

WIND CHILL describes a sensation, the way we feel as a result of the combined cooling effect of temperature and wind. This feeling can't be measured using an instrument, so a mathematical formula was developed in 1939 that related air temperature and wind speed to the cooling sensation. This formula was revised in 2001 by a team of scientists and medical experts from Canada and the U.S. with the Canadian Department of National Defence contributing human volunteers. The new index is based on the loss of heat from the face (Environment Canada 2001a).

## WIND SPEED

Average is the average of the hourly wind speeds for the period in question measured in kilometres per hour (km/h). Average hourly wind speeds are obtained from a RM Young Wind Monitor anemometer at a height of 10 m .

Peak Gust refers to the highest instantaneous value recorded by the anemometer system for the period of reference, irrespective of direction and/or duration. Comparison is with published data for Environment Canada, Saskatoon Airport station.

see also Beaufort Wind Scale

## BIBLIOGRAPHY

Anderson, F.W.. 1964. Regina's Terrible Tornado. Frontier Books.
Christiansen, E.A. (Ed.), 1970. Physical Environment of Saskatoon, Canada. Saskatchewan Research Council, Saskatoon, SK, in cooperation with National Research of Canada, Ottawa, ON.

Cole, F.W. 1980. Introduction to Meteorology. John Wiley \& Sons, Inc., Toronto, ON.
Environment Canada, Atmospheric Environment Service (AES). 1975. 1974 Annual Meteorological Summary, Saskatoon, Saskatchewan. AES, Downsview, ON.

Environment Canada, Atmospheric Environment Service (AES). 1976. Soil Temperature. AES, Downsview, ON.

Environment Canada, Atmospheric Environment Service (AES). 1978. Manual of Climatological Observations, 2nd Ed. AES, Downsview, ON.

Environment Canada, Atmospheric Environment Service (AES). 1982. Canadian Climate Normals 1951-1980. Canadian Climate Centre, Downsview ON.

Environment Canada, Atmospheric Environment Service, (AES). 1992. AES Guidelines for Co-operative Climatological Autostation. Environment Canada, Downsview, ON.

Environment Canada, Atmospheric Environment Service (AES). 1993. Canadian Climate Normals 1961-1990. Canadian Climate Centre, Downsview ON.

Environment Canada, Meteorological Service of Canada, 2001a. Canada's New Wind Chill Index. Minister of Public Works and Government Services Canada, Ottawa, ON.

Environment Canada, Meteorological Service of Canada, 2001b. Wind Chill Calculation Chart. http://www.msc.ec.gc.ca/ windchill/Chart_chill_e.jpg (Oct 24, 2001).

Environment Canada, Meteorological Service of Canada, 2002a. Annual Meteorological Summary, Saskatoon International Airport, 2001. Environment Canada, Edmonton, AB.

Environment Canada, Meteorological Service of Canada, 2002b. Canadian Daily Climate Data on CD-ROM - Western Canada. Climate and Water Products Division, Downsview, ON.

Environment Canada, Meteorological Service of Canada, 2002c. Monthly Weather Statistics for June 2002 for Major Sites in Prairie and Northern Region. Environment Canada, Edmonton, AB.

Environment Canada, Meteorological Service of Canada, 2002d. Monthly Weather Statistics for Summer 2002 for Major Sites in Prairie and Northern Region. Environment Canada, Edmonton, AB.

Environment Canada, Meteorological Service of Canada, 2003. Annual Meteorological Summary, Saskatoon International Airport, 2002. Environment Canada, Edmonton, AB.

Goble, R. J., 2002. Volcanoes. In: Introduction to Geology/Physical Geology. http://www.class.unl.edu/geol100/ Review2.html (June, 2002)

Helden, A. van, 1995. The Thermometer In: The Galileo Project. http://es.rice.edu/ES/humsoc/Galileo/. Rice University web site, (June 10, 2003)

Heidorn, K. 1998. The Weather Legacy of Admiral Sir Francis Beaufort In: Weather People and History. http:// irishculture.about.com/gi/dynamic/offsite.htm?site=http://www.islandnet.com/\%7Esee/weather/history/ beaufort.htm (July 30, 2001).

Huschke, R.E. (Ed.) 1959. Glossary of Meteorology. American Meteorological Society, Boston, MA.
Luetkemeyer, K., 2001. The Year Without a Summer. http://geowww.gen.ou.edu/~kcluetke/exercise5.html. University of Oklahoma. (June 05, 2002)

National Research Council of Canada, Herzberg Institute of Astrophysics, n.d. Sunrise - Sunset Tables for Saskatoon 2002. http://www.hia.nrc.ca/services/sunmoon/sunmoon.html (Feb18, 2002).

Olm, O., 2001. Personal Communication. September 17, 2001. Saskatchewan Research Council, Saskatoon, SK.
Phillips, D.W. 1988. 1989 Canadian Weather Trivia Calendar. Canadian Government Publishing Centre, Supply and Services Canada, Ottawa, Canada.

Phillips, D.W., 1993. The Day Niagara Falls Ran Dry!: Canadian Weather Facts and Trivia. Key Porter Books Ltd., Toronto, ON.
Phillips, D.W. 1998. Blame it on the Weather: Strange Canadian Weather Facts. Key Porter Books, Ltd., Toronto, ON.
Phillips, D.W. 2001. 2002 Canadian Weather Trivia Calendar. Fifth House Ltd., Calgary, AB.
Strelieff, J., 2002. Drought Dries Duck's Digs. Saskatoon StarPhoenix, Saskatoon, Sk, July 21, 2002, pA9.
Thomas, R., 2002. The Old Farmer's Almanac 2003: Canadian Edition. Yankee Publishing, Inc., Dublin, NH.
University of Saskatchewan, Kernen Farm 2001. Personal Communication. November 2001. University of Saskatchewan, Saskatoon, SK.
U.S. Geological Survey. Cascades Volcano Observatory, n.d. Deadliest Volcanic Eruptions Since 1500 A.D. http:// vulcan.wr.usgs.gov (March 27, 2002)

Wittrock, V., 2003. Personal Communication, June, 2003. Saskatchewan Research Council, SK.
World Meteorological Organization (WMO). 1988. Technical Regulations: General Meteorological Standards and Recommended Practices, 1988 ed., Suppl. No. 2 (IV. 1996), WMO - No. 49. Geneva, Switzerland.


[^0]:    ${ }^{1}$ Christiansen 1970; Environment Canada 1975
    ${ }^{2}$ Olm 2001

[^1]:    Environment Canada, $2002 b$
    ${ }^{2}$ Wittrock, 2003

[^2]:    Grass temperature is taken from a surface probe whose calibration is unknown at present

[^3]:    Grass temperature is taken from a surface probe whose calibration is unknown at present

[^4]:    *rass temperature is taken from a surface probe whose calibration is unknown at present

