

SASKATOON SRC CLIMATOLOGICAL REFERENCE STATION

C. Beaulieu
V. Wittrock

ACKNOWLEDGEMENTS

The 1999 data was compiled and recorded by Carol Beaulieu with assistance from Virginia Wittrock. Ms Stacey Carmichael provided data entry for the long term climate trends. Miss Beaulieu maintained the site while instrument maintenance was carried out by the Instrumentation, Certification and Testing Branch of the Saskatchewan Research Council (SRC). Elaine Wheaton, Virginia Wittrock and Len Turple assisted with the proofreading and editing. Consultations with Larry Flysak and Don Rybak of the Canadian Meteorological Service, Saskatoon, SK, were most helpful in verifying and comparing data. Although every caution has been taken to ensure the accuracy of data and information presented, errors may occur. If errors are noticed, we would appreciate being informed so they can be corrected.

Information and data contained in this report shall not be published, copied, placed in a retrieval system or distributed whole or in part without prior written consent of the Saskatchewan Research Council. All references made to this report shall be acknowledged.

Enquiries concerning the SRC Climatological Reference Station (CRS), its data, measurement programs and publications, or becoming a sponsor are most welcome. For further information contact:

Elaine Wheaton	Virginia Wittrock	Carol Beaulieu	Climatology Section
Lead Scientist	Research Scientist	Research Technician	Fax 306-933-7817
306-933-8179	306-933-8122	306-933-8182	Saskatchewan Research Council
e-mail wheaton@src.sk.ca	e-mail wittrock@src.sk.ca	e-mail beaulieu@src.sk.ca	Web Site Home Page
			http://www.src.sk.ca

SASKATCHEWAN RESEARCH COUNCIL

CLIMATE REFERENCE STATION SPONSORS, 1999

Bicriginal
 Sel TEC Kipp \& matruenti may Zonen

 Agrictetufa and Fove

[^0]
Table of Contents

Acknowledgements ii
Climate Reference Station Supporters 1999 ii
What is the Climate Reference Station? iv
Climate Reference Station History v
Summary 1
Climate Reference Station Outreach, 1999 2
Weather Events 3
Temperature
Precipitation
Wind
Frost Free Season
Unusual Occurrences
Annual Summary 4
Monthly Weather Summaries 4
Monthly Average Temperatures, 1999 17
Monthly Precipitation, 1999 18
Monthly Heating Degree-days (D-D), 1999 19
Monthly Growing and Cooling Degree-days (D-D), 1999 20
Monthly Bright Sunshine, 1999 21
Monthly Global and Diffuse Solar Radiation, 1999 22
Daily Global and Diffuse Solar Radiation (MJ/m²), 1999 23
Number of Days with Frost, Precipitation \& Bright Sunshine, 1999 24
Soil Temperatures at 0900 Hours, 1999 25
5 to 20 cm depths
Soil Temperatures at 1600 Hours, 1999 26
5 to 20 cm depths
Soil Temperatures at 0900 Hours, 1999 27
50 to 300 cm depths
Monthly Wind Speed, 1999 28
Average Annual Temperature and Precipitation Time Series for Saskatoon, 1900-1999 29
Sunrise and Sunset at Saskatoon, 1999 30
Sunrise and Sunset at Saskatoon, 2000 30
Windchill Factor 31
Beaufort Scale for Wind Speed 32
Instruments Used at Saskatoon SRC CRS and Glossary of Terms 33
Bibliography 37

WHAT IS THE CLIMATE REFERENCE STATION?

The Saskatchewan Research Council's Climate Reference Station (SRC CRS) at Saskatoon is classified as a principal climatological station with supplementary climatological observations (Environment Canada 1992). A reference climatological station's data are intended for the purpose of determining climatic trends. This requires long periods (not less than thirty years) of homogeneous records, where man-made environmental changes have been and/or are expected to remain at a minimum. Ideally the records should be
of sufficient length to enable the identification of secular changes of climate (WMO 1988). At our principal station, hourly readings are taken of elements which include temperature, precipitation amount, humidity, wind, and atmospheric pressure. Our supplemental observations include rate of rainfall, soil temperature, bright sunshine and solar radiation. High quality and consistent climatological observations are maintained providing data sets to meet the current concerns of the effects of climatic change and increased variability.

Purpose and Benefits

The purpose of the SRC CRS is to provide a record of the observed meteorological elements so that the climate of the area and its changes can be accurately documented and described. Climatological data have assumed new importance as a result of social and environmental issues in which climate is a dominant factor. Climatological information assists in realizing new technological opportunities and social changes. Climate information is necessary and valuable for use in areas such as agriculture, forestry, land use and facility placement, water and energy resources, health and comfort.

The CRS also allows us to:

- evaluate long term climate trends - early warning system for increased frequencies of extreme events such as drought, floods, etc.;
- determine the impacts of climate events on society, economy, health, and ecosystems. Examples include intense rainfall causing flooding and property damage and heat stress with its implications on health;
- do value-added research;
- be part of regional, national and global networks in an important agricultural and ecological area;
- facilitate development of additional programs -
e.g. air quality, biodiversity, the Boreal Ecosystem Atmosphere Study (BOREAS) project, and climate change monitoring;
- have roles in various programs within SRC including spray drift work, BOREAS, and collaborative research (e.g. Western College of Veterinary Medicine and the College of Agriculture, University of Saskatchewan); and.
- provide climate data to governments, universities, insurance agencies, lawyers, agricultural sectors, chemical companies, schools, building science, construction firms, media, transportation studies, accident studies, wildlife studies and interested individuals.

The goals of the Climate Reference Station are first, to maintain the high quality of data gathered over its more than thirty years of existence at its current location and second, to continue to monitor a large variety of elements. These various elements combined with the long-term collection period as well as the stable location allow CRS to be a very valuable climate information collection station.

CLIMATE REFERENCE STATION HISTORY

Meteorological observations were first taken at or near Saskatoon by the Royal Northwest Mounted Police in 1889 beginning with only temperatures recorded. There is some disagreement in the early records as to the exact location of the weather observing point, but the majority of the evidence indicates $52^{\circ} 15^{\prime} \mathrm{N}$ and $106^{\circ} 20^{\prime} \mathrm{W}$, elevation 480 m above sea level as the most probable location. This would place it at Clark's Crossing on the South Saskatchewan River, approximately 16 km northeast of the centre of the City of Saskatoon. There was a settlement at Clark's Crossing at that time as well as ten to fifteen families on either side of the river at present day Saskatoon.

Little is known about the very early observers; however, the records do show that Major T.H. Keenan took the

In 1916 a climatological station was established by the Physics Department of the University of Saskatchewan and continuous observations were kept twice daily until January 15,1965 . The long-time observer at this site was Mr. Sidney Cox. The Saskatchewan Research Council took over the program in the fall of 1963 at the newly established Climatological Reference Station at latitude $52^{\circ} 09^{\prime} \mathrm{N}$, longitude $106^{\circ} 36^{\prime} \mathrm{W}$ and elevation 497m asl(Christiansen 1970; Environment Canada 1974).

The long-time observer (16 years) at this present site was Mr. Joe Calvert, who retired from the program in August, 1983. Ray Begrand succeeded Mr. Calvert until September 1988 when Virginia Wittrock became the primary observer. Carol Beaulieu became the primary observer in 1992. observations from March 1892 until March 1895, and Mr. George Will was the observer from January 1897 until April 1897. It is thought that Thomas H. Copeland was involved in the observational program from 1895 to May 1, 1901, at which time it was taken over by Mr. Eby, Sr. Mr. Eby, Sr. recorded the observations until his death in 1921, at which time his daughter, Miss E.S. Eby, continued to record the observations. Her brother, Mr. J.M. Eby, recorded the observations beginning in April 1931 until the station was closed October 31 1942. The Eby station recorded temperature, precipitation and weather notes on fog, thunderstorms, winds and any unusual weather phenomena. Reports were made twice daily, morning and evening.

SUMMARY

Data concerning temperature, precipitation, wind speed and direction, bright sunshine, solar radiation, and soil temperature, recorded at the Saskatchewan Research Council (SRC) Climatological Reference Station (CRS), ($52^{\circ} 09^{\prime} \mathrm{N}, 106^{\circ} 36^{\prime} \mathrm{W}, 497 \mathrm{~m}$ asl) are presented for the year 1999 and compared with the longterm (circa 1900-1998) and standard-period (19611990) records.

The year 1999, especially the end, defied predictions. As a La Niña year, temperatures should have been cold (Jobin, 1999). The actual record was at odds with this prediction. The monthly mean maximum temperatures exceeded their normals eight out of the twelve months for a yearly average of $1.9^{\circ} \mathrm{C}$ above normal. For the monthly mean minimum temperatures, September failed to rise above its normal along with June and July which were $0.1^{\circ} \mathrm{C}$ below normal. The mean minimum temperature for the year was $2.5^{\circ} \mathrm{C}$ above normal. Although the entire year was warmer than usual, warm temperatures did not occur during the prime growing months of May, June and July. These months posted below normal values especially in the monthly maximum temperatures. The greatest deviation from the normals occurred in November and December with temperatures soaring between $5.2^{\circ} \mathrm{C}$ to $9.1^{\circ} \mathrm{C}$ above their normal values with the greatest deviation in the maximum value.

The monthly totals for growing degree-days $\left(5^{\circ} \mathrm{C}\right.$ base) were below average for the critical months of May, June, and July. August, which was above average, was the peak growing degree-day month instead of July. The frost free period began on May 10th (ten days earlier than usual), and lasted 140 days ending on September 26th (12 days later than usual). Growing degree-days value for the frost free period was 1432.2 (290.9 lower
than last year). Heating degree-days also show a cool summer with May, June and July being below normal.

Cold spells (less than or equal to $-30^{\circ} \mathrm{C}$) occurred three times for a total of five days. All days were in January. Hot spells (greater than or equal to $30^{\circ} \mathrm{C}$) occurred nine times for a total of nine days. August had six days with five occurring in the latter third of the month. Record maximum temperatures for the site were recorded four times during November and seven times in December with the longest duration of extreme temperatures equaling six days over the Christmas holidays.

Annual precipitation was under the 30 -year average by 63.1 mm (82.5% of normal). The cumulative precipitation value was below normal throughout the year. Precipitation for January to May was 66.3% of normal. June to August brought the annual precipitation total to near normal with above normal monthly precipitation. However, the very dry fall and early winter with only 28.9% of the expected moisture closed the year with an average of 17.5% below the yearly normal. July won the precipitation honours for 1999. It was the rainiest month (86.4 mm) with the rainiest day $(18.0 \mathrm{~mm})$ and had the heaviest rainfall (10.6 mm). The total monthly amount was 155.1% of normal for the month.

1999 was duller than last year by 37.2 hours. The annual bright sunshine for 1999 was 252.7 hours less than the 30 -year average. March, September, November and December were above normal. With record temperatures, December registered 28 hours or a third over the normal value for bright sunshine. The cumulative total for May, June, July and August was 272.6 hours less than normal (77.4% of normal). The year ended with 89.4% of normal sunshine

Saskatoon experienced calmer than normal winds on average. All months reported lower than average wind speeds. However, the Near Gale (51-62 km/h) and Gale wind ($63-75 \mathrm{~km} / \mathrm{h}$) frequency for wind gusts was high. Near Gale winds occurred 35 times and Gale winds occurred 9 times. On May 18th funnel clouds were visible west of the city. Two confirmed

the city (Perreaux, 1999). The system tracked from NW to SE. CRS received 8.6 mm of rain during the tornadoes touched down in late afternoon resulting in tornado touchdowns. hail and copious amounts of rain on the west side of

CLIMATE REFERENCE STATION OUTREACH, 1999

The climate station staff was very active in outreach activities in 1999. Presentations on 'How We Measure the Weather' were conducted at the Climate Reference Station and as classroom presentations. The
presentations were well received by students and staff with positive postpresentation feedback. Fourteen classes from twelve schools, including four rural schools, participated in the programme. Three hundred and fifty children plus field trip chaperones got a close look at the instruments used to measure temperature, precipitation, wind and radiation at present and in the past. Student volunteers enthusiastically helped demonstrate various instruments.

On October 5th, the Saskatchewan Research Council sponsored an open house at CRS for our guests and supporters. Although the day was cool with a breeze, it was well attended. Sponsor recognition plaques were unveiled and later mounted on the perimeter fence. After the unveiling, tours of the site were given, questions answered and coffee and doughnuts served. The open house received very favourable coverage in both the StarPhoenix and the Western Producer newspapers and on Global and CTV television.

WEATHER EVENTS

Temperature

COLD SPELLS $\left(<=-30^{\circ} \mathrm{C}\right)$		HOT SPELLS $\left(>=+30^{\circ} \mathrm{C}\right)$	
Month	Day	Month	Day
January	$3,6-8,12$	July	$11,21,29$
		August	$5,20,21,24$,
		25,30	
Total	5	Total	9

Coldest day = January 7th at $-34.3^{\circ} \mathrm{C}$
Hottest day $=$ August 25 th at $33.9^{\circ} \mathrm{C}$

Precipitation

WETTEST MONTHS	WETTEST DAYS	GREATEST RAINFALL EVENTS
July 86.4 mm	July 15 18.0 mm	July $8=10.6 \mathrm{~mm}$ in 30 min.
June 51.4 mm	July 8 18.0 mm	July $8=13.4 \mathrm{~mm}$ in 60 min.
August		
45.2 mm	June 25 16.6 mm	July $7-8=18.4 \mathrm{~mm}$ in 3 hrs.

Frost Free Season

YEAR	LAST SPRING FROST	FIRST FALL FROST	LENGTH OF SEASON (days)
1993	May 17	Sept 14	119
1994	May 9	Oct 4	147
1995	May 22	Sept 19	119
1996	May 12	Sept 29	139
1997	May 14	Oct 5	143
1998	May 13	Sept 30	138
1999	May 9	Sept 27	140
Normal	May 19	Sept 15	118

Unusual Occurrences

February 6 - rain
March 28 - thunderstorm
May 18 - Tornadoes NW of Saskatoon; pea-size hail
June 21 - severe thunderstorm
August 16 - funnel clouds west of Saskatoon
October 17 - thunderstorm
November 7, 8, 12, \& 30 - record daily maximum temperatures
December 5, 24-28 - record daily maximum for temperatures
December 31 - only trace of snow on the ground

Wind

For Your Information
April 1999 , with average temperatures $2.8^{\circ} \mathrm{C}$ above normal, was warm but not as warm as last April when temperatures were $3.8^{\circ} \mathrm{C}$ above normal. Only three days were above $20^{\circ} \mathrm{C}$. Sixteen days recorded no frost with the last frost recorded on April 23 . This April, with only 11.5 mm of precipitation, was even drier than last year. The precipitation, slightly more than half of normal precipitation, fell over one more day than normal. The yearly total, similar to last year, is causing concern with the possibility of dry field conditions and blowing soil. The bright sunshine value was 12.6 hours below normal with seven days receiving less than one hour of bright sunshine.
April weather can change suddenly. In 1903, 76 men, women and children died when 82 million tonnes of limestone from Turtle Mountain roared down and obliterated the entrance to a coal mine, covered the valley below and nearby ranches and then swept across the valley to sideswipe the village of Frank, AB. Of the roughly 100 individuals living in the path of the slide; 23 escaped death. Three days earlier, 14 cm of snow had fallen and temperatures plunged from 22° to $-9^{\circ} \mathrm{C}$ (Phillips, 1997; Frank Slide Interpretive Centre Web Site, May 1999). The sudden freezing of water-soaked limestone may have been the last straw and triggered the avalanche on the already unstable mountain side.

[^1] sent

		Saskatchewan Research Council Monthly Weather Summary										
JUNE 1999			$\begin{aligned} & 1999 \\ & \text { VALUE } \end{aligned}$	1998 VALUE	NORMAL(1961-1990) OR EXTREME VALUE FOR CRS	EXTREME FOR SASKATOON STATIONS						
	Average month	m	20.8	21.3	22.6							
	Extreme monthly maximum (${ }^{\circ} \mathrm{C} /$ date) Number of recording years		28.7/19	28.7/25	5 41.0/1988/05	40.6/1988/05102						
			27									
	Average monthly			9.1	8.8	9.2						
	Extreme monthly minimum (${ }^{\circ} \mathrm{C} /$ date)		3.3/27	0.5/02	$2-3.3 / 1967 / 06$	-3.9/1903.0/09\&1917/02						
	Number of recording years				27	102						
	Monthly average (${ }^{\circ} \mathrm{C}$)		15.0	15.1	15.9							
	Days with frost		0	0	0							
	Growing degree-days ($5^{\circ} \mathrm{C}$ base)		298.6	302.8	327.3							
	Heating degree-days ($18^{\circ} \mathrm{C}$ base)		103.4	106.8	-84							
	Cooling degree-days ($18^{\circ} \mathrm{C}$ base)		12.0	19.6	21.2							
	Monthly total (mm)		66.4	51.4	63.6							
	Greatest 24-hour (mm/date)		16.6/25	34.4/19	99.4/1983/24	99.4/1983/24						
	Number of	cording years			27	102						
	Days with recordable precipitation		13	11	12							
	Yearly total to date (mm)		145.3	102.0	182.6							
$\begin{array}{\|l\|l} 0 \\ \frac{2}{3} \end{array}$	Average monthly speed (km/h) Peak Gust (direction/speed(km/h)/date)		13.7	36.5		17.0						
			www70.9/23	${ }^{\text {s 6 }} 1.1 / 30$		s117.0/1986/01						
$\begin{array}{\|l\|l} z \\ \frac{2}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{array}$	Total bright sunshine (hours) \% of possible bright sunshine Number of days with bright sunshine Monthly total global radiation ($\mathrm{MJ} / \mathrm{m}^{2}$) Monthly total diffuse radiation ($\mathrm{MJ} / \mathrm{m}^{2}$)		229.3 185.5 297									
			45.9	37.1	59.4							
			28	28	29							
			610.4	572.5	638.7							
			230.7	251.1	228.1							
立	Average temperature $\left({ }^{\circ} \mathrm{C}\right)$ @ 9:00 am	$5 \mathrm{~cm} / 10 \mathrm{~cm}$	12.2/14.3	$\begin{array}{r} 14.1 / 15.9 \\ 17.0 / 12.7 \\ 9.9 / 8.3 \\ 5.8 \end{array}$	$\begin{array}{r} 15.3 / 15.7 \\ 16.2 / 14.0 \\ 10.4 / 8.2 \\ 5.2 \end{array}$							
		$20 \mathrm{~cm} / 50 \mathrm{~cm}$	15.0/11.7									
		$100 \mathrm{~cm} / 150 \mathrm{~cm}$	9.7/8.0									
		300 cm	5.2									
For Your Information June 1999 continued the cool temperature trend. Monthly averages were below normal with the average maximum the greatest at $1.8^{\circ} \mathrm{C}$ below normal value. Only five days reached maximum temperatures above $25^{\circ} \mathrm{C}$. Daily average temperatures remained below $20^{\circ} \mathrm{C}$ except for three days. Soil temperatures were below normal for all levels. The growing degree-days were 28.7 below normal for the month. For the frost-free period of 52 days, the growing degree-day total was calculated to be 443.2 . The monthly precipitation total was above normal for the first time this year. Two storms late in the month contributed slightly less than half of the total monthly rainfall. CRS recorded 13.4 mm of rain during the severe thunderstorm of June 21 , but the airport only measured 0.5 mm (Environment Canada, 2000). With the rainfall occurring throughout the month, the monthly bright sunshine total was 67.9 hours less than usual. If you ever hear of a meteorology convention nearby; be prepared for the worst. On June 6, 1968, 35 meteorologists congregated at the Alberta Hail Studies Centre in Penhold, AB. To the participants great delight storms pelted the base. Hail fell on farms west of the air base, leaving fields looking like winter and in the south, a small tornado formed. A perfect terrible day for a meteorological tour (Phillips, 1998).												
	matestation su \qquad 6	orters 										

		Saskatchewan Research Council Monthly Weather Summary Latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Saskatoon Longitude $106^{\circ} 36^{\prime} \mathrm{W}$				
	OCTOBER 1999		$\begin{gathered} 1999 \\ \text { VALUE } \end{gathered}$	$\begin{gathered} 1998 \\ \text { VALUE } \end{gathered}$	NORMAL(1961-1990) OR EXTREME VALUE FOR CRS	EXTREME FOR SASKATOON STATIONS
			11.6	10.2	210.9	
	Extreme monthly maximum (${ }^{\circ} \mathrm{C} /$ date)		20.9/24	23.6/07	7 28.5/1984/08	32.2/1943/05
	Number of recording years				27	99
	Average monthly minimum (${ }^{\circ} \mathrm{C}$)		-0.6	0.4	-4 -1.3	
	Extreme monthly minimum (${ }^{\circ} \mathrm{C} /$ date)		-7.2/01	-6.5/31	$1-21.5 / 1984 / 30 \& 31$	-25.6/1919/26
	Number of recording years				28	99
	Monthly average (${ }^{\circ} \mathrm{C}$)		5.5	5.3	34.8	
	Days with frost		20	14	$4{ }^{19}$	
	Growing degree-days ($5^{\circ} \mathrm{C}$ base)		50.6	67.6	6 61.5	
	Heating degree-days ($18^{\circ} \mathrm{C}$ base)		387.5	393.7	7006	
	Cooling degree-days ($18^{\circ} \mathrm{C}$ base)		0.0	0.0	0.0	
	Monthly total (mm)		4.0	37.7	7 17.5	
	Greatest 24-hour (mm/date)		2.6/31	29.1a	36.7/1984/16	41.7/1969/03
	Number of recording years				27	99
	Days with recordable precipitation		3	10	- 6	
	Yearly total to date (mm)		287.5	247.7	7324.0	
$\frac{0}{3}$	Average monthly speed (km/h)		13.9	14.0		17.0
	Peak Gust (direction/speed(km/h)/date)		N65.0/31	s559.8/02		nw138/1967/16
$$	Total bright sunshine (hours)		133.3	121.0	160.7	
	\% of possible bright sunshine		40.4	36.7	788.8	
	Number of days with bright sunshine		29	22	27	
	Monthly total glob	radiation ($\mathrm{MJ} / \mathrm{m}^{2}$)	230.2	203.3	3239.1	
	Monthly total diffuse radiation ($\mathrm{MJ} / \mathrm{m}^{2}$)		132.1	143.5b	- 92.6	
\%	Average temperature (${ }^{\circ} \mathrm{C}$) @ 9:00 am	$5 \mathrm{~cm} / 10 \mathrm{~cm}$	3.2/5.3	3.6/5.0	4.1/4.5	
		$20 \mathrm{~cm} / 50 \mathrm{~cm}$	7.1/7.7	7.1/7.8	8.0/8.0	
		$100 \mathrm{~cm} / 150 \mathrm{~cm}$	8.9/9.3	9.5/10.2	9.2/9.7	
		300 cm	9.3	10.0	9.5	

For Your Information
We can only hope that the old proverb "the last Sunday of the month indicates the weather of the next month", is not true (Lalonde 1994). Hallowe'en was very unpleasant with $65 \mathrm{~km} / \mathrm{h}$ north winds accompanied by rain, snow and ice pellets. The rest of the month was extremely dry with less than one quarter of the expected precipitation. On the 17^{th}, a brief thunderstorm produced 1.2 mm of rain and one clap of thunder. Temperatures for the month were less than $1^{\circ} \mathrm{C}$ above normal. However, the growing degree-day value was 17.7% less than normal and the heating degree-day value was 5% less than normal. Soil temperatures were within $1^{\circ} \mathrm{C}$ of their normal values with the exception of the 20 cm level which recorded an average of $1.1^{\circ} \mathrm{C}$ greater than normal. Although bright sunshine occurred 2 days more than usual, it was totally absent for 2 and for 4 days, it was less than one hour.
Hallowe'en heralded in the winter weather but what kind of winter will we have? David Phillips, "Canadian Weather Trivia Calendar" creator, says the forecast is for warmer than normal but if it is a normal winter, people will feel it is more brutal than it actually is because of what they have become used to in the past two winters (Robinson 1999). Proverbs say "If trees hang onto their leaves, the coming winter will be cold" and "As high as the weeds, so the winter's snow will be" (Lalonde 1994). So to insure a mild winter, shake the leaves off your trees and mow your weeds!

```
climatestationsupporters
*)
```


		Monthl Latitude	KATCHE WAN $2^{\circ} 09^{\prime} \mathrm{N}$	ESEARCH ther atoon	Council Summar y Longitude $106^{\circ} 36^{\prime} \mathrm{W}$		
	NOVEMBE	1999	$\begin{gathered} 1999 \\ \text { VALUE } \end{gathered}$	$\begin{gathered} 1998 \\ \text { VALUE } \end{gathered}$	NORMAL(1961-1990) OR EXTREME VALUE FOR CRS	EXTREME FOR SASKATOON STATIONS	
	Average monthly	mum (${ }^{\circ} \mathrm{C}$)	5.1	0.0	-1.5		
	Extreme monthly	ximum (${ }^{\circ} \mathrm{C} /$ date)	19.3/07	10.5/26	19.4/1975/04	21.7/1903/03	
	Number of	ording years			28	100	
	Average monthly	nimum (${ }^{\circ} \mathrm{C}$)	-5.4	-7.2	-10.6		
	Extreme monthly	nimum (${ }^{\circ} \mathrm{C} /$ date)	-17.0/28	-19.7/17	-33.5/1985/24	-39.4/1893/30	
	Number of	cording years			28	100	
	Monthly average		-0.1	-3.6	-6.0		
	Days with frost		26	29	29		
	Growing degree-day	$\left(5^{\circ} \mathrm{C}\right.$ base)	12.5	0.0	2.8		
	Heating degree-d	($18^{\circ} \mathrm{C}$ base)	544.4	648.5	721.5		
	Cooling degree-d	($18^{\circ} \mathrm{C}$ base)	0.0	0.0	0.0		
	Monthly total (mm)		2.8	6.1	15.5		
	Greatest 24-hour	m/date)	1.8/25	2.3/16	19.3/1978/04	27.9/1938/01	
	Number of	cording years			28	100	
	Days with record	precipitation	4	5	8		
	Yearly total to dat	mm)	290.3	253.8	339.5		
$\frac{2}{2}$	Average monthly	eed (km/h)	14.1	13.9		16.0	
	Peak Gust (direction	/speed(km/h)/date)	WNW64.2/04	sw50.6/26		${ }^{*} 100.0 / 1976 / 17$	
	Total bright sunsh	(hours)	118.0*	57.2	100.9		
	\% of possible brig	sunshine	44.6*	21.7	38.1		
	Number of days	bright sunshine	28	22	22		
	Monthly total glob	radiation ($\mathrm{MJ} / \mathrm{m}^{2}$)	131.9*	110.1	123.7		
	Monthly total diffu	radiation ($\mathrm{MJ} / \mathrm{m}^{2}$)	58.3*	72.1	73.6		
¢	Average temperature $\left({ }^{\circ} \mathrm{C}\right)$ @ 9:00 am	$5 \mathrm{~cm} / 10 \mathrm{~cm}$	-1.0/0.7	-0.7/0.3	-2.2/-1.7		
		$20 \mathrm{~cm} / 50 \mathrm{~cm}$	2.7/4.1	2.4/3.0	-0.5/2.8		
		$100 \mathrm{~cm} / 150 \mathrm{~cm}$	6.3/7.3	5.9/7.1	5.4/6.8		
		300 cm	8.1	8.5	8.1		
For Your Information November's temperatures were not a reliable indicator that the winter months were approaching. The mean maximum was $6.6^{\circ} \mathrm{C}$ and the mean minimum was $5.2^{\circ} \mathrm{C}$ warmer than usual. The average mean for the month, at $-0.1^{\circ} \mathrm{C}$, was $5.9^{\circ} \mathrm{C}$ higher than normal. Only the years 1987 (max. $5.3^{\circ} \mathrm{C}$), $1992\left(\mathrm{~min} . ~-5.0^{\circ} \mathrm{C}\right)$ and 1981 (mean $0.4^{\circ} \mathrm{C}$) recorded variables warmer than this November's. Only 4 days did not have above zero temperatures. On the $7^{\text {th }}$, the temperature came within a tenth of a degree of the monthly maximum record for CRS. The mild temperatures are reflected in 177.1 heating degree-days less than normal. Upper level soil temperatures also are considerably warmer than usual. The site registered 6.4% above normal bright sunshine with at least 118 hours recorded." Five days received less than 1 hour of bright sunshine. With only 3 days recording precipitation, the total for November was 2.8 mm making this the fifth driest November for CRS. The driest year was 1974 when only a trace was recorded. With the dry weather and lack of snow, 'black blizzards' can developed. On November 13, 1933, dust from the prairies blew to the Atlantic Coast. Black rain fell in New York State and brown snow fell in Vermont (Phillips 1987). *Datalogger was not recording for the afternoon of the $24^{\text {th }}$ due to the instillation of new equipment.							
			USaskFower Biariginal				

DECEMBER 1999			1999 VALUE	$\begin{gathered} 1998 \\ \text { VALUE } \end{gathered}$	NORMAL(1961-1990) OR EXTREME VALUE FOR CRS	EXTREME FOR SASKATOON STATIONS	
	Average monthly maximum (${ }^{\circ} \mathrm{C}$) Extreme monthly maximum (${ }^{\circ} \mathrm{C} /$ date) Number of recording years Average monthly minimum (${ }^{\circ} \mathrm{C}$)		-0.7	-8.1	-9.8		
			8.4/27	7.8/13	9.5/1987/07	14.4/1939/05	
			28		100		
			-11.3	-16.3	-19.3		
	Extreme monthly minimum (${ }^{\circ} \mathrm{C} /$ date) Number of recording years			-29.1/20	-30.5/21	-42.2/1973/31	-43.9/1892/22
			28			100	
	Monthly average (${ }^{\circ} \mathrm{C}$)		-6.0	-12.2	-14.5		
	Days with frost		29	31	31		
	Growing degree-d	s ($5^{\circ} \mathrm{C}$ base)	0.0	0.0	0.0		
	Heating degree-d	($18^{\circ} \mathrm{C}$ base)	743.2	937.4	1004.8		
	Cooling degree-d	($18^{\circ} \mathrm{C}$ base)	0.0	0.0	0.0		
2	Monthly total (mm)		7.4	8.9	21.3		
	Greatest 24-hour (mm/date)		2.7/03	3.0/18	14.5/1973/23	28.4/1936/02	
	Number of recording years				28	100	
	Days with recorda	e precipitation	11	7262.7	12		
	Yearly total to dat	mm)	297.7		360.8		
$\frac{0}{2}$	Average monthly speed (km/h)		14.8	15.1		16.0	
	Peak Gust (direction/speed(km/h)/date)		mw65.1/19	N NE68.0/18		$\mathrm{w}_{121 / 1955 / 12}$	
$\begin{array}{\|l\|l} z \\ \frac{0}{4} \\ \frac{1}{d} \\ \frac{d}{x} \end{array}$	Total bright sunshine (hours) \% of possible bright sunshine Number of days with bright sunshine Monthly total global radiation ($\mathrm{MJ} / \mathrm{m}^{2}$) Monthly total diffuse radiation ($\mathrm{MJ} / \mathrm{m}^{2}$)		111.789 .3		83.7		
			111.7 46.1	36.8	34.5		
			25	25	23		
			98.5	99.7	$\begin{aligned} & 95.2 \\ & 54.3 \end{aligned}$		
			44.0	48.5			
\%	Average temperature $\left({ }^{\circ} \mathrm{C}\right)$ @ 9:00 am	$5 \mathrm{~cm} / 10 \mathrm{~cm}$	$\begin{array}{r} -4.8 /-3.6 \\ -1.7 /-0.1 \\ 3.0 / 4.6 \\ 6.6 \end{array}$	$\begin{array}{r} -6.7 /-5.9 \\ -3.7 /-1.2 \\ 3.0 / 4.8 \\ 6.8 \end{array}$	$\begin{array}{r} -7.1 /-6.5 \\ -5.5 /-1.6 \\ 1.9 / 3.9 \\ 6.3 \end{array}$		
		$20 \mathrm{~cm} / 50 \mathrm{~cm}$					
		$100 \mathrm{~cm} / 150 \mathrm{~cm}$					
		300 cm					
For Your Information "Different" best describes December's weather with the unseasonably warm temperatures continuing through to month's end. In fact, on the $28^{\text {th }}$ and $29^{\text {th }}$, temperatures did not fall below zero and rain fell instead of snow. The average temperature for the month was $8.5^{\circ} \mathrm{C}$ above normal with the average maximum $9.1^{\circ} \mathrm{C}$ above and the average minimum $8.0^{\circ} \mathrm{C}$ above normal. The unusual mild air temperatures produced warm soil temperatures even though the ground was unprotected with a snow cover. The soil temperatures ranged from $3.8^{\circ} \mathrm{C}$ in the upper levels to $0.3^{\circ} \mathrm{C}$ in the lower. Precipitation for the month was a third of normal. The annual total was 63.1 mm or 17.5% less than normal. Bright sunshine was 28 hours more than usual which encouraged people to be outside on the golf courses and in the parks enjoying the Wyoming-type temperatures (Wood 1996). This is not the only mild December in recent times. In 1997, a merchant in St. Albert, AB, concerned that his daughter would be unable to enjoy winter during the holidays without snow, trucked in 5 trailer loads of the white stuff scraped from the local hockey rink and dumped them in front of his store. Surprised shoppers enjoyed the wintry sight especially the three snowman (Phillips, 1998).							

Monthly Average Temperatures, 1999

MONTH	MEAN MAXIMUM TEMPERATURE (${ }^{\circ} \mathrm{C}$)		MEAN MINIMUM TEMPERATURE (${ }^{\circ} \mathrm{C}$)		MEAN AVERAGE TEMPERATURE (${ }^{\circ} \mathrm{C}$)	
	1999	Normal	1999	Normal	1999	Normal
January	-12.0	-12.4	-20.9	-22.6	-16.4	-17.4
February	-4.0	-8.6	-13.2	-18.9	-8.6	-13.7
March	0.9	-2.1	-8.0	-12.1	-3.5	-7.0
April	12.7	9.9	0.9	-2.0	6.8	4.0
May	16.8	18.5	5.3	4.5	11.0	11.6
June	20.8	22.6	9.1	9.2	15.0	15.9
July	23.2	25.1	11.4	11.5	17.4	18.3
August	25.4	24.3	11.6	10.1	18.5	17.2
September	18.2	17.7	4.3	4.9	11.2	11.3
October	11.6	10.9	-0.6	-1.3	5.5	4.8
November	5.1	-1.5	-5.4	-10.6	-0.1	-6.0
December	-0.7	-9.8	-11.3	-19.3	-6.0	-14.5
Average	9.8	7.9	-1.4	-3.9	4.2	2.0

Monthly Precipitation, 1999

MONTH	PRECIPITATION (mm)		CUMULATIVE PRECIPITATION (mm)	
	1999	Normal	1999	Normal
January	18.9	20.5	18.9	20.5
February	3.5	14.6	22.4	35.1
March	5.8	19.9	28.2	55.0
April	11.5	20.3	39.7	75.3
May	39.2	43.7	78.9	119.0
June	66.4	63.6	145.3	182.6
July	86.4	55.7	231.7	238.3
August	41.4	35.3	273.1	273.6
September	10.4	32.9	283.5	306.5
October	4.0	17.5	287.5	324.0
November	2.8	15.5	290.3	339.5
December	7.4	21.3	297.7	360.8
Total	297.7	360.8		

Monthly Heating Degree-Days (D-D), 1999

MONTH	HEATING DEGREE-DAYS Base $18^{\circ} \mathrm{C}$	
	1999	Normal
January	1067.3	1114.8
February	745.9	909.9
March	667.3	784.1
April	334.7	420.9
May	218.0	206.9
June	103.4	84.0
July	58.8	32.0
August	30.3	62.4
September	204.9	206.2
October	387.5	406.5
November	544.4	721.5
December	743.2	1004.8
Total	5105.7	5954.0

\rightarrow Heating D-D

- Heating D-D Normal

Monthly Growing and Cooling Degree-Days (D-D), 1999

MONTH	GROWING DEGREE-DAYS Base $5^{\circ} \mathrm{C}$		COOLING DEGREE-DAYS Base $18^{\circ} \mathrm{C}$		FROST-FREE GROWING DD Base $5^{\circ} \mathrm{C}$	
	1999	Normal	1999	Normal	1999	Cumulative
January	0.0	0.0	0.0	0.0		
February	0.0	0.0	0.0	0.0		
March	4.0	1.2	0.0	0.0		
April	84.5	54.8	0.0	0.2		
May	191.7	209.4	2.5	7.0	145.0	145.0
June	298.6	327.3	12.0	21.2	298.6	443.6
July	383.0	414.8	38.8	43.9	383.0	826.6
August	419.6	379.6	46.9	39.0	419.6	1246.2
September	190.4	197.1	0.1	6.2	186.0	1432.2
October	50.6	61.5	0.0	0.0		
November	12.5	2.7	0.0	0.0		
December	0.0	0.0	0.0	0.0		
Total	1634.9	1648.4	100.3	117.5	1432.2	

Monthly Bright Sunshine, 1999

	BRIGHT SUNSHINE (hours)			
MONTH				
	1999	Normal	Possible* \% of Possible	
January	94.7	104.6	258.8	36.6
February	116.3	134.1	278.4	41.8
March	182.5	174.6	368.7	49.5
April	216.8	229.4	417.8	51.9
May	176.4	285.7	487.1	36.2
June	229.3	297.2	500.1	45.9
July	276.7	330.3	502.2	55.1
August	253.4	295.2	453.1	55.9
September	219.0	184.4	379.8	57.7
October	133.3	160.7	329.8	40.4
November	118.0	100.9	264.5	44.6
December	111.7	83.7	242.4	46.1
Total	2128.1	2380.8	4482.7	47.5

possible Bright Sunshine hours calculated from National Research Council of Canada, Hertzberg Institute of Astrophysics sunrise/sunset table for 1999

Monthly Global and Diffuse Solar Radiation, 1999

MONTH	**GLOBAL RADIATION ($\mathrm{MJ} / \mathrm{m}^{2}$)		**DIFFUSE RADIATION ($\mathrm{MJ} / \mathrm{m}^{2}$)	
	1999	Normal	1999	Normal
January	126.1	129.9	70.6	71.4
February	204.5	210.1	149.9	105.3
March	388.7	362.4	221.8	173.9
April	496.2	492.2	172.5	178.5
May	534.1	586.3	225.1	222.2
June	610.4	638.7	230.7	228.1
July	677.2	633.5	234.8	216.5
August	555.4	529.0	221.7	185.6
September	412.1	351.8	127.6	127.6
October	230.2	239.1	132.1	92.6
November	131.9	123.7	58.3	73.6
December	98.5	95.2	44.0	54.3
Total	4465.3	4391.9	1889.1	1729.6

** Global and Diffuse radiation sensors were re-calibrated during February and March

Daily Global and Diffuse Solar Radiation (MJ/m²), 1999

DATE	JAN		FEB		MAR		APR		MAY		JUN		JULY		AUG		SEPT		OCT		NOV		DEC	
	G	D	G	D	G	D	G	D	G	D	G	D	G	D	G	D	G	D	G	D	G	D	G	D
1	2.9	2.6	6.1	1.3	9.9	5.5	18.6	4.4	9.9	7.5	8.1	7.1	24.6	10.4	24.1	5.9	12.9	8.5	7.2	6.4	7.3	2.7	3.9	0.8
2	3.3	1.1	5.2	3.5	9.3	9.6	21.5	2.2	24.7	3.6	16.6	8.8	13.2	11.5	23.4	5.7	17.8	5.9	7.7	4.5	6.3	4.0	3.8	1.3
3	5.9	1.1	6.6	4.1	12.1	8.3	18.4	3.8	10.9	8.1	6.5	6.0	12.2	7.8	24.3	4.1	14.1	7.9	8.5	5.2	6.8	2.9	1.6	1.7
4	3.3	1.5	4.6	2.7	7.5	10.0	12.8	11.6	16.8	9.9	20.7	7.7	20.9	11.1	24.9	4.3	12.4	5.5	5.8	4.4	3.1	2.9	6.2	1.1
5	2.2	2.1	10.2	1.8	8.8	11.0	16.6	9.2	19.5	9.5	24.0	6.5	26.9	7.1	20.5	7.0	19.3	2.7	10.0	4.1	6.7	2.1	2.1	2.2
6	6.5	1.3	7.8	1.8	12.8	7.0	14.1	8.7	27.0	2.8	23.8	8.4	30.0	4.1	17.3	12.0	18.7	3.0	8.5	5.5	5.4	3.3	3.8	0.8
7	2.9	2.3	7.3	1.9	10.8	12.1	20.2	3.3	26.6	2.8	15.7	7.8	22.0	5.9	23.7	7.7	6.3	6.0	4.9	4.1	6.5	1.5	2.5	2.0
8	4.6	1.8	6.2	4.9	6.2	8.8	20.3	2.9	17.1	8.1	6.3	5.6	22.5	7.1	13.9	8.8	18.3	4.6	6.5	5.1	5.7	2.1	1.4	1.5
9	4.0	1.3	7.1	2.3	11.7	9.2	10.5	7.0	11.6	10.1	15.3	9.3	27.8	8.5	21.8	8.7	18.8	2.2	10.5	3.8	4.2	3.2	3.8	1.4
10	3.2	2.6	6.6	6.5	10.6	12.7	17.5	5.4	4.1	3.7	27.2	6.4	28.7	5.5	9.8	10.7	17.2	3.8	12.0	1.8	3.3	2.9	2.0	1.9
11	3.5	2.8	10.6	2.8	11.9	9.9	17.1	5.3	6.5	5.7	15.4	11.1	28.5	5.3	20.4	9.0	4.6	4.5	5.1	4.5	4.9	2.0	3.9	1.2
12	5.0	2.1	8.7	4.1	8.7	11.5	18.7	6.4	13.0	9.3	19.2	5.9	23.0	9.1	10.8	8.8	17.0	3.9	7.2	4.6	5.0	1.5	3.6	1.8
13	3.1	2.8	6.3	5.5	14.0	12.0	17.4	6.4	18.3	11.8	27.0	6.7	24.4	5.5	8.2	8.6	17.2	4.0	5.8	4.1	5.3	1.4	2.6	1.5
14	3.0	2.7	7.3	5.4	13.1	9.3	18.8	6.1	9.1	6.8	28.9	6.3	21.8	12.5	19.3	11.7	17.9	2.0	10.5	3.1	5.3	1.8	4.0	1.2
15	3.7	2.0	4.5	6.1	15.3	4.2	23.1	2.4	9.7	8.4	27.7	6.9	3.8	4.2	12.8	12.3	17.8	2.2	6.4	5.2	5.4	1.8	4.8	1.1
16	4.7	1.3	5.0	6.8	4.9	6.8	23.6	2.5	6.8	5.8	28.2	5.5	14.4	11.2	7.4	8.6	17.4	2.2	9.2	5.0	5.3	1.5	1.8	1.7
17	2.3	2.2	4.2	5.7	17.5	4.9	13.9	9.5	19.1	9.6	30.2	3.2	18.6	9.4	12.7	9.6	13.5	5.3	6.7	5.6	0.8	0.8	3.9	1.2
18	2.5	2.4	5.9	7.9	13.5	9.3	23.7	2.4	16.8	7.2	21.1	12.2	17.4	12.1	22.9	6.1	7.5	6.3	7.7	6.5	1.3	1.3	1.3	1.3
19	5.3	1.3	5.4	7.3	16.6	4.1	11.1	9.3	5.6	4.6	24.6	8.0	22.7	8.6	18.1	11.2	8.3	6.9	5.2	4.7	2.6	2.4	3.5	1.0
20	4.2	2.5	6.4	7.9	16.7	3.8	4.0	3.8	15.8	10.8	28.2	5.7	28.4	4.7	21.4	8.1	16.4	2.0	7.5	6.4	3.3	2.2	3.0	1.9
21	3.2	3.2	6.0	8.3	17.4	3.7	13.3	8.4	8.8	7.8	14.5	8.8	27.7	4.9	21.5	7.5	11.8	5.7	9.9	9.4	4.0	1.7	2.8	2.0
22	2.1	2.0	7.0	6.7	18.1	3.9	22.7	6.8	16.0	9.8	26.3	8.0	27.6	4.8	11.5	8.8	11.3	4.4	6.9	6.4	4.5	1.2	1.5	1.6
23	3.6	3.5	7.6	8.2	17.3	3.8	24.8	2.4	22.6	7.7	18.2	8.7	26.6	6.2	22.6	2.7	14.7	2.7	9.4	1.6	6.2	1.2	4.9	1.0
24	6.8	1.4	10.2	7.3	17.2	4.0	21.8	4.1	21.2	9.4	27.7	7.1	19.7	6.7	21.1	4.1	10.0	5.0	8.0	2.6	0.8	0.1	3.7	0.9
25	5.7	1.3	8.8	7.7	15.5	6.2	22.5	2.5	29.1	2.8	5.3	4.7	8.6	7.9	20.8	4.9	7.3	4.9	7.5	2.7	2.7	1.6	2.9	1.4
26	3.8	3.3	8.1	9.8	12.8	5.2	7.9	6.9	28.3	4.7	10.8	7.3	25.9	5.5	21.8	3.2	11.2	3.4	7.3	4.3	3.4	2.4	2.5	2.3
27	3.1	2.9	12.4	5.3	16.6	4.9	18.0	7.9	28.7	4.7	21.3	13.3	24.2	7.0	21.4	2.5	13.1	3.2	8.5	1.4	5.0	1.3	3.3	1.6
28	5.9	1.7	12.4	6.3	12.5	5.0	6.2	5.5	28.8	4.9	23.3	11.0	26.3	5.1	21.1	2.5	14.4	2.0	3.6	3.3	3.8	1.4	3.5	1.3
29	5.5	4.0			17.1	4.0	7.6	7.0	21.3	13.3	23.1	8.6	26.6	5.1	10.0	8.4	11.4	3.9	6.4	2.6	4.4	1.2	2.9	1.1
30	4.5	4.5			6.7	6.1	9.5	8.4	28.1	5.9	25.2	8.1	13.5	10.0	19.4	3.9	13.5	3.0	8.2	1.6	2.6	1.9	3.5	0.9
31	5.8	3.0			5.6	5.0			12.3	8.0			18.7	10.0	6.5	4.3			1.6	1.6			3.5	1.3
TOTAL	126.1	70.6	204.5	149.9	388.7	221.8	496.2	172.5	534.1	225.1	610.4	230.7	677.2	234.8	555.4	221.7	412.1	127.6	230.2	132.1	131.9	58.3	98.5	44.0
COMMENTS: $\quad \mathrm{G}=$ Global Radiation $\mathrm{D}=$ Diffuse Radiation Feb 9 - Diffuse sent for calibration; using instrument borrowed from the University of Saskatchewan March 15-18 - On March 15 at 1600h the recalibrated instrument for the global was installed. Tthe new calibration co-effient entered into the program on the March 16 at 1730 h . The new calibration for the recalibrated diffuse instrument was re-entered on 18 at 0800. November 24 - datalogger down in the afternoon; data incomplete.																								

Number of Days for Frost, Precipitation \& Bright Sunshine, 1999

MONTH	NUMBER OF FROST DAYS		NUMBER OF PRECIPITATION DAYS		NUMBER OF BRIGHT SUNSHINE DAYS	
	1999	Normal	1999	Normal	1999	Normal
January	31	31	14	11	22	24
February	28	28	4	10	23	25
March	30	30	11	9	28	27
April	14	20	8	7	27	27
May	2	6	12	9	28	29
June	0	0	13	12	28	29
July	0	0	14	11	30	30
August	0	0	7	9	31	30
September	3	5	6	9	29	27
October	20	20	3	6	29	27
November	26	29	4	8	28	22
December	29	31	11	12	25	23
Total	183	200	107	113	328	320

Soil Temperatures at 0900 hours, 1999
(5 to 20 cm depths)

MONTH	5cm (${ }^{\circ} \mathrm{C}$) 0900h		10cm (${ }^{\circ} \mathrm{C}$) 0900h		20cm (${ }^{\circ} \mathrm{C}$) 0900h	
	1999	Normal	1999	Normal	1999	Normal
January	-8.0	-8.8	-7.7	-8.3	-6.3	-7.6
February	-4.7	-7.7	-4.0	-7.3	-2.7	-6.8
March	-2.8	-3.4	-1.8	-3.1	-1.0	-2.8
April	2.2	2.8	4.4	3.2	4.9	3.5
May	8.2	10.1	10.2	10.6	10.8	10.9
June	12.2	15.3	14.3	15.7	15.0	16.2
July	14.9	17.6	17.2	18.0	18.0	18.8
August	14.9	16.4	17.2	16.8	18.2	17.9
September	8.7	10.5	11.3	11.2	13.1	12.5
October	3.2	4.1	5.3	4.5	7.1	6.0
November	-1.0	-2.2	0.7	-1.7	2.7	-0.5
December	-4.8	-7.1	-3.6	-6.5	-1.7	-5.5

Soil Temperatures at 1600 hours, 1999
(5 to 20 cm depths)

MONTH	$5 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right) 1600 \mathrm{~h}$		$10 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right) 1600 \mathrm{~h}$		$20 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right) 1600 \mathrm{~h}$	
	1999	Normal	1999	Normal	1999	Normal
January	-8.0	-8.4	-7.6	-8.1	-6.2	-6.8
February	-4.8	-7.1	-3.8	-7.1	-2.7	-5.9
March	-2.6	-2.9	-1.8	-2.7	-0.9	-2.2
April	5.3	6.0	6.0	5.4	5.0	4.2
May	11.4	14.2	12.0	13.8	11.0	11.8
June	16.0	20.0	16.6	19.2	15.2	17.1
July	18.5	22.1	19.6	21.5	18.3	19.5
August	18.3	20.6	19.4	20.2	18.3	18.6
September	12.4	13.9	13.1	13.6	13.0	13.1
October	5.7	6.1	6.4	6.2	7.0	6.6
November	0.1	-1.4	1.1	-1.1	2.6	0.2
December	-4.4	-6.6	-3.6	-6.3	-1.8	-4.8

Soil Temperatures at 0900 hours, 1999

(50 to 300 cm depths)								
MONTH	50cm (${ }^{\circ} \mathrm{C}$) 0900h		$100 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right) 0900 \mathrm{~h}$		150cm (${ }^{\circ} \mathrm{C}$) 0900h		300cm (${ }^{\circ} \mathrm{C}$) 0900h	
	1999	Normal	1999	Normal	1999	Normal	1999	Normal
January	-5.5	-3.8	-1.0	-0.2	1.2	1.8	4.7	4.5
February	-3.3	-4.1	-0.8	-1.0	0.9	0.8	3.1	3.3
March	-2.0	-1.8	-0.2	-0.6	0.6	0.4	2.4	2.5
April	1.9	2.5	1.3	1.2	1.4	1.2	2.3	2.2
May	7.7	8.9	6.1	5.9	4.8	4.4	3.4	3.1
June	11.7	14.0	9.7	10.4	8.0	8.2	5.2	5.2
July	14.5	16.8	12.2	13.2	10.4	11.1	7.1	7.5
August	15.4	16.8	13.5	14.1	11.9	12.4	8.7	9.1
September	12.5	13.3	12.2	12.5	11.5	11.9	9.7	9.9
October	7.7	8.0	8.9	9.2	9.3	9.7	9.3	9.5
November	4.1	2.8	6.3	5.4	7.3	6.8	8.1	8.1
December	-0.1	-1.6	3.0	1.9	4.6	3.9	6.6	6.3

Monthly Wind Speed, 1999

MONTH	AVERAGE (km/h)		MAXIMUM GUST (km/h)		
	1999	Normal *	Direction	1999	Normal *
January	13.6	16.0	SW	51.1	69.0
February	14.8	16.0	SE	58.0	67.0
March	15.8	17.0	E	56.4	64.0
April	16.5	18.0	NW	71.4	73.0
May	16.9	18.0	NW	64.7	80.0
June	13.7	17.0	WNW	70.9	80.0
July	13.7	16.0	WNW	58.6	77.0
August	12.3	16.0	WSW	64.6	75.0
September	14.1	17.0	WNW	64.8	72.0
October	13.9	17.0	N	65.0	73.0
November	14.1	16.0	WNW	64.2	67.0
December	14.8	16.0	NNW	65.1	65.0

*1961-90 Normals used are for the Saskatoon Airport provided by Environment Canada

Average Annual Temperature and Precipitation Time Series for Saskatoon, 1900-1999

- Mean Temperature - 5 Year Mean Temperature - Decade Temperature Average

- Precipitation - 5 Year Mean Precipitation - Decade Precipitation Average

Sunrise and Sunset at Saskatoon, 1999

(local time in hours and minutes)

1999	JANUARY		FEBRUARY		MARCH		APRIL		MAY		JUNE		JULY		AUGUST		SEPTEMBER		OCTOBER		NOVEMBER		DECEMBER	
Date	Rise	Set																						
1	9:15	17:05	8:47	17:54	7:53	18:46	6:42	19:40	5:37	20:32	4:52	21:17	4:50	21:30	5:27	20:57	6:18	19:55	7:07	18:45	8:01	17:38	8:52	16:58
2	9:15	17:06	8:46	源	7:51	18:48	6:39	19:42	5:35	20:33	4:51	21:18	4:51	21:30	5:29	20:56	6:19	19:52	7:09	18:42	8:03	17:36	8:54	16:58
3	9:15	17:07	8:44	17:57	7:48	18:49	6:37	19:44	5:33	20:35	4:50	21:19	4:51	21:30	5:30	20:54	6:21	19:50	7:10	18:40	8:05	17:35	8:55	16:57
4	9:15	17:08	8:42	17:59	7:46	18:51	6:35	19:45	5:31	20:37	4:50	21:20	4:52	21:29	5:32	20:52	6:22	19:48	7:12	18:38	8:07	17:33	8:57	16:57
5	9:14	17:10	8:41	18:01	7:44	18:53	6:33	19:47	5:29	20:38	4:49	21:21	4:53	21:29	5:34	20:50	6:24	19:45	7:14	18:35	8:09	17:31	8:58	16:56
6	9:14	17:11	8:39	18:03	7:42	18:55	6:30	19:49	5:28	20:40	4:48	21:22	4:54	21:28	5:35	20:49	6:26	19:43	7:15	18:33	8:10	17:29	8:59	16:56
7	9:14	17:12	8:37	18:05	7:40	18:57	6:28	19:51	5:26	20:42	4:48	21:23	4:55	21:27	5:37	20:47	6:27	19:41	7:17	18:31	8:12	17:28	9:00	16:55
8	9:13	17:14	8:35	18:07	7:37	18:58	6:26	19:52	5:24	20:43	4:47	21:24	4:56	21:27	5:38	20:45	6:29	19:38	7:19	18:29	8:14	17:26	9:02	16:55
9	9:13	17:15	8:34	18:09	7:35	19:00	6:23	19:54	5:22	20:45	4:47	21:25	4:57	21:26	5:40	20:43	6:31	19:36	7:21	18:26	8:16	17:24	9:03	16:55
10	9:12	17:16	8:32	18:11	7:33	19:02	6:21	19:56	5:21	20:46	4:47	21:26	4:58	21:25	5:42	20:41	6:32	19:34	7:22	18:24	8:18	17:23	9:04	16:54
11	9:11	17:18	8:30	18:12	7:30	19:04	6:19	19:57	5:19	20:48	4:46	21:26	4:59	21:24	5:43	20:39	6:34	19:31	7:24	18:22	8:19	17:21	9:05	16:54
12	9:11	17:19	8:28	18:14	7:28	19:05	6:17	19:59	5:17	20:50	4:46	21:27	5:00	21:24	5:45	20:37	6:36	19:29	7:26	18:20	8:21	17:20	9:06	16:54
13	9:10	17:21	8:26	18	7:26	19	14	20:01	5:16	20:51	4:46	21:28	5:01	21:23	5:46	20:35	6:37	19:27	7:27	18:17	8:23	17:18	9:07	16:54
14	9:09	17:22	8:24	18:18	7:24	19:09	6:12	20:03	5:14	20:53	4:45	21:28	5:02	21:22	5:48	20:33	6:39	19:24	7:29	18:15	8:25	17:17	9:08	16:54
15	9:08	17:24	8:22	18:20	7:21	19	6:10	20:04	5:12	20:54	4:45	21:29	5:04	21:21	5:50	20:31	6:40	19:22	7:31	18:13	8:27	17:15	9:09	16:54
16	9:07	17:26	8:20	18:22	7:19	19:13	6:08	20:06	5:11	20:56	4:45	21:29	5:05	21:20	5:51	20:29	6:42	19:20	7:33	18:11	8:28	17:14	9:10	16:55
17	9:07	17:27	8:18	18:24	7:17	19	6:06	20:08	5:09	20:57	4:45	21:30	5:06	21:19	5:53	20:27	6:44	19:17	7:34	18:09	8:30	17:12	9:10	16:55
18	9:06	17:29	8:16	18:26	7:14	19:1	6:04	20:09	5:08	20:59	4:45	21:30	5:07	21:17	5:55	20:25	6:45	19:15	7:36	18:06	8:32	17:11	9:11	16:55
19	9:04	17:30	8:14	18:27	7:12	19:18	6:01	20:11	5:07	21:00	4:45	21:31	5:09	21:16	5:56	20:23	6:47	19:13	7:38	18:04	8:33	17:10	9:12	16:55
20	9:03	17:32	8:12	18:29	7:10	19:19	5:59	20:13	5:05	21:02	4:45	21:31	5:10	21:15	5:58	20:21	6:49	19:10	7:40	18:02	8:35	17:09	9:12	16:56
21	9:02	17:3	8:10	18:31	7:07	19:2	5:57	20:15	5:04	21:03	4:46	21:31	5:11	21:14	5:59	20:19	6:50	19:08	7:42	18:00	8:37	17:08	9:13	16:56
22	9:01	17:3	8:08	18	7:05	19:2	5:55	20:16	5:03	21:05	4:46	21:31	5:13	21:12	6:01	20:17	6:52	19:06	7:43	17:58	8:39	17:06	9:13	16:57
23	9:00	17:37	8:06	18:35	7:03	19:25	5:53	20:18	5:01	21:06	4:46	21:31	5:14	21:11	6:03	20:14	6:54	19:03	7:45	17:56	8:40	17:05	9:14	16:57
24	8:59	17:39	8:04	18	7:00	19	5:51	20:20	5:00	21:07	4:46	21:31	5:15	21:10	6:04	20:12	6:55	19:01	7:47	17:54	8:42	17:04	9:14	16:58
25	8:57	17:41	8:02	18:38	6:58	19:28	5:49	20:21	4:59	21:09	4:47	21:31	5:17	21:08	6:06	20:10	6:57	18:59	7:49	17:52	8:43	17:03	9:15	16:59
26	8:56	17:43	7:59	18:40	6:56	19:30	5:47	20:23	4:58	21:10	4:47	21:31	5:18	21:07	6:08	20:08	6:59	18:56	7:51	17:50	8:45	17:02	9:15	16:59
27	8:55	17:45	7:57	18:42	6:53	19:32	5:45	20:25	4:57	21:11	4:48	21:31	5:20	21:05	6:09	20:06	7:00	18:54	7:52	17:48	8:47	17:01	9:15	17:00
28	8:53	17:46	7:55	18:44	6:51	19:33	5:43	20:26	4:56	21:13	4:48	21:31	5:21	21:04	6:11	20:03	7:02	18:52	7:54	17:46	8:48	17:01	9:15	17:01
29	8:52	17:48			6:49	19:35	5:41	20:28	4:55	21:14	4:49	21:31	5:23	21:02	6:13	20:01	7:04	18:49	7:56	17:44	8:50	17:00	9:15	17:02
30	8:50	17:50			6:46	19:37	5:39	20:30	4:54	21:15	4:49	21:31	5:24	21:01	6:14	19:59	7:05	18:47	7:58	17:42	8:51	16:59	9:15	17:03
31	8:49	17:52			6:44	19:39			4:53	21:16			5:26	20:59	6:16	19:57			8:00	17:40			9:15	17:04

Sunrise and Sunset at Saskatoon, 2000

(local time in hours and minutes)

2000	JANUARY		FEBRUARY		MARCH		APRIL		MAY		JUNE		JULY		AUGUST		SEPTEMBER		OCTOBER		NOVEMBER		DECEMBER	
Date	Rise	Set																						
1	9:15	17:05	8:48	17:53	7:51	18:47	6:40	19:42	5:35	20:33	4:51	21:18	4:51	21:30	5:29	20:56	6:19	19:53	7:08	18:43	8:03	17:37	8:54	16:58
2	9:15	䉼	8:46	5	7:49	18:49	38	43	5:34	0:35	$4: 5$	1:19	4:5	21:30	5:3	20:54	6:20	9:51	7:10	18:41	8:05	7:35	8:55	16:57
3	9:15	17:07	8:44	17:57	7:47	18:51	6:35	19:45	5:32	20:36	4:50	21:20	4:52	21:29	5:32	20:53	6:22	19:48	7:12	18:38	8:06	17:33	8:56	16:57
4	9:15	17:08	8:43	17:59	7:45	18:53	6:33	19:47	5:30	20:38	4:49	21:21	4:53	21:29	5:33	20:51	6:24	19:46	7:13	18:36	8:08	17:32	8:58	16:56
5	9:15	17:09	8:41	18:01	7:42	18:54	6:31	19:48	5:28	20:39	4:49	21:22	4:54	21:28	5:35	20:49	6:25	19:44	7:15	18:34	8:10	17:30	8:59	16:56
6	9:14	17:11	8:39	18:03	7:40	18:56	6:29	19:50	5:26	20:41	4:48	21:23	4:55	21:28	5:36	20:47	6:27	19:41	7:17	18:31	8:12	17:28	9:00	16:55
7	9:14	17:12	8:38	18:04	7:38	18:58	6:26	19:52	5:24	20:43	4:48	21:24	4:56	21:27	5:38	20:45	6:29	19:39	7:18	18:29	8:14	17:26	9:01	16:55
8	9:13	17:13	8:36	18:06	7:36	19:00	6:24	19:54	5:23	20:44	4:47	21:25	4:57	21:26	5:40	20:43	6:30	19:37	7:20	18:27	8:15	17:25	9:03	16:55
9	9:13	17:15	8:34	18:08	7:33	19:02	6:22	19:55	5:21	20:46	4:47	21:26	4:58	21:25	5:41	20:42	6:32	19:34	7:22	18:25	8:17	17:23	9:04	16:55
10	9:12	17:16	8:32	18:10	7:31	19:03	6:19	19:57	5:19	20:48	4:46	21:26	4:59	21:25	5:43	20:40	6:34	19:32	7:24	18:22	8:19	17:22	9:05	16:54
11	9:12	17:17	8:30	18:12	7:29	19:05	6:17	19:59	5:18	20:49	4:46	21:27	5:00	21:24	5:44	20:38	6:35	19:30	7:25	18:20	8:21	17:20	9:06	16:54
12	9:11	17:19	8:28	18:14	7:26	19:07	6:15	20:00	5:16	20:51	4:46	21:28	5:01	21:23	5:46	20:36	6:37	19:27	7:27	18:18	8:23	17:18	9:07	16:54
13	9:10	17:20	8:26	18:16	7:24	19:09	6:13	20:02	5:14	20:52	4:45	21:28	5:02	21:22	5:48	20:34	6:38	19:25	7:29	18:16	8:24	17:17	9:08	16:54
14	9:09	17:22	8:25	18:18	7:22	19:10	6:11	20:04	5:13	20:54	4:45	21:29	5:03	21:21	5:49	20:32	6:40	19:23	7:31	18:13	8:26	17:16	9:09	16:54
15	9:09	17:24	8:23	18:19	7:19	19:12	6:08	20:06	5:11	20:55	4:45	21:29	5:04	21:20	5:51	20:30	6:42	19:20	7:32	18:11	8:28	17:14	9:09	16:55
16	9:08	17:25	8:21	18:21	7:17	19	6:06	20:07	5:10	20:57	4:45	21:30	5:06	21:19	5:53	20:28	6:43	19:18	7:34	18:09	8:30	17:13	9:10	16:55
17	9:07	17:27	8:19	18:23	7:15	19	6:04	20:09	5:08	20:58	4:45	21:301	5:07	21:18	5:54	20:26	6:45	19:16	7:36	18:07	8:31	17:12	9:11	16:55
18	9:06	17:28	8:17	18:25	7:13	19:1	6:02	20:11	5:07	21:00	4:45	21:30	5:08	21:16	5:56	20:23	6:47	19:13	7:38	18:05	8:33	17:10	9:12	16:55
19	9:05	17:30	8:15	18:27	7:10	19:19	6:00	20:12	5:06	21:01	4:45	21:31	5:10	21:15	5:57	20:21	6:48	19:11	7:39	18:03	8:35	17:09	9:12	16:56
20	9:04	17:32	8:13	18:29	7:08	19:21	5:58	20:14	5:04	21:03	4:46	21:31	5:11	21:14	5:59	20:19	6:50	19:09	7:41	18:0	8:36	17:08	9:13	16:56
21	9:03	17:33	8:11	18:31	7:06	19:23	5:56	20:16	5:03	21:04	4:46	21:31	5:12	21:13	6:01	20:17	6:52	19:06	7:43	17:59	8:38	17:07	9:13	16:57
22	9:01	17:35	8:08	18:	7:03	19:24	5:53	20:18	5:02	21:06	4:46	21:31	5:14	21:11	6:02	20:15	6:53	19:04	7:45	17:56	8:40	17:06	9:14	16:57
23	9:00	17:37	8:06	18	7:01	19:26	5:51	20:19	5:00	21:07	4:46	21:31	5:15	21:10	6:04	20:13	6:55	19:02	7:46	17:5	8:41	17:04	9:14	16:58
24	8:59	17:39	8:04	18:	6:59	19:	5:49	20:21	4:59	21:0	4:47	21:31	5:17	21:09	6:06	20	6:57	18:59	7:48	17:52	8:43	17:03	9:15	16:58
25	8:58	17:40	8:02	18:	6:56	19:29	5:47	20:23	4:58	21:10	4:47	21:31	5:18	21:07	6:07	20:08	6:58	18:57	7:50	17:5	8:45	17:03	9:15	16:59
26	8:56	17:42	8:00	18:40	6:54	19:31	5:45	20:24	4:57	21:11	4:48	21:31	5:19	21:06	6:09	20:06	7:00	18:54	7:52	17:48	8:46	17:02	9:15	17:00
27	8:55	17:44	7:58	18	6:52	19:33	5:43	20:26	4:56	1:12	4:48	21:31	5:21	21:04	6:1	20:04	7:02	18:52	7:54	17:46	8:4	17:01	9:1	17:01
28	8:54	17:46	7:56	18:4	6:49	19:35	5:41	20:28	4:55	21:14	4:49	21:31	5:22	21:03	6:12	20:02	7:03	18:50	7:55	17:44	8:49	17:00	9:15	17:02
29	8:52	17:48	7:53	18:45	6:47	19:36	5:39	20:29	4:54	21:15	4:49	21:31	5:24	21:01	6:14	20:00	7:05	18:47	7:57	17:43	8:51	16:59	9:15	17:03
30	8:51	17:50			6:45	19:38	5:37	20:31	4:53	21:16	4:50	21:30	5:25	20:59	6:15	19:57	7:07	18:45	7:59	17:41	8:52	16:58	9:15	17:03
31	8:49	17:51			6:42	19:40			4:52	21:17			5:27	20:58	6:17	19:55			8:01	17:39			9:15	17:04

Windchill Factor

(watts/m²)

Wirulchill Formula

$W \mathrm{WC}=$ windshill in Watts per square metre $u=$ vind speed in km/h
$T=$ temperature in C

Precise Formula ${ }^{\text {a }}$

V/C $=(12.12 \div 6.114 \overline{\mathrm{u}}-0.3222 \times \mathrm{u})(33-\mathrm{T})$
Rounded Version ${ }^{*}$
VCC $=(12+6 \sqrt{\mathrm{uI}}-0.3 \times \mathrm{u})(33-\mathrm{T})$
Equivalent Temperature*
$\mathrm{ET}=33-((12+6 \sqrt{\mathrm{u}}-0.3 \times \mathrm{u})(33-\mathrm{T}) / 27.8))$

Quick and Dirty Formula**

$-(1 / 2 \mathbf{u})+\mathbf{T}=$ wind chill in \mathbf{C}

Wind Equivalent
 Chill Temperature C

$\begin{array}{lll}700 & -8 & \text { Conditions considered comfortable }\end{array}$ when dressed for sking
1200 - 11 Conditions no longer pleasant for outdoor activities on overcast days
$\begin{array}{lll}1400 & -18 & \text { Conditions no longer pleasant for }\end{array}$ outdoor activities on sunny days
1600-25 Freezing of exposed skin begins for most people
$2300-60$ Conditions for walking become dangerous. Exposed skin freezes in 1-3 minules. Warm winter clothing essential with facial protection.
2700-56 Exposed flesh freezes within 30 seconds

Beaufort Scale for Wind Speed

\(\left.\begin{array}{|c|c|c|c|c|}\hline Beaufort \& km/h \& \begin{array}{c}Beaufort

Number\end{array} \& Sescription \& Standard Specification*\end{array} $$
\begin{array}{c}\text { Revised Specification** }\end{array}
$$\right]\)| Smoke rises vertically. |
| :---: |

[^2]
INSTRUMENTS USED AT SASKATOON SRC CRS AND GLOSSARY OF TERMS

BEAUFORT WIND SCALE was developed by Admiral Sir Francis Beaufort in 1805 and adopted by the British Navy in 1838. It consisted of 13 degrees of wind strength, from calm to hurricane, based upon the effects of various wind strengths upon the amount of canvas carried by the fully rigged frigates of the period. Over the years it has been modified as needed and in 1946 the scale values were defined by ranges of the windspeed as measured at a height of 10 meters above the surface for each Force Number. In effect, this transformed the Beaufort Wind Force Scale in the Beaufort Wind Speed Scale. This scale is still the standard scale for visual observations of the wind. (Heidorn, 1998)

BRIGHT SUNSHINE is the unobstructed direct radiation from the sun, as opposed to the shading of a location by clouds or by other obstructions.
Number of Days is the total number of days when at least 0.1 of an hour of bright sunshine was recorded.
Percentage Possible refers to the ratio of measured bright sunshine hours to total possible daylight hours in a given period, expressed as a percentage.
Possible daylight hours are taken from the sunrise/set tables provided by the National Research Council of Canada, Herzberg Institute of Astrophysics, Victoria, BC.
Total is the sum of the daily bright sunshine values in hours and tenths of hours as measured by an automated sunshine recorder using voltaic cells.

DEGREE-DAY is an index for various temperature related calculations
Cooling (CDD) The cooling requirement to achieve a stipulated comfort value in an indoor environment. For most purposes, a temperature of greater than $18^{\circ} \mathrm{C}$ is considered uncomfortable and supplementary cooling is required. On a specific day, the amount by which $18^{\circ} \mathrm{C}$ is less than the daily average temperature defines the number of cooling degree-days for that day.

Mathematically:
$\mathrm{CDD}=\left(\mathrm{T}-18^{\circ} \mathrm{C}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$
if T is equal to or less than $18^{\circ} \mathrm{C}, \mathrm{CDD}=0$.
Monthly and annual values of CDD are obtained by summing daily values.
Extreme Cooling (XCDD) The cooling requirement to achieve a stipulated comfort value in an indoor environment. For most purposes, a temperature of greater than $18^{\circ} \mathrm{C}$ is considered uncomfortable and supplementary cooling is required. A temperature of greater than $24^{\circ} \mathrm{C}$ has been used as an index of potential heat stress. On a specific day, the amount by which $24^{\circ} \mathrm{C}$ is less than the daily average temperature defines the number of extreme cooling degree-days for that day. Mathematically:

XCDD $=\left(\mathrm{T}-24^{\circ} \mathrm{C}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$
if T is equal to or less than $24^{\circ} \mathrm{C}, \mathrm{XCDD}=0$.
Monthly and annual values of XCDD are obtained by summing daily values.
Growing (GDD) The growing requirement in order for plant growth to proceed. The air temperature must exceed a critical value appropriate to the plant species in question. For many members of the grass family, including most commercial cereals grown on the prairies, a base temperature of $5.0^{\circ} \mathrm{C}$ has been established. On a specified day, the difference between the daily average temperature and the $5.0^{\circ} \mathrm{C}$ base temperature defines the number of growing degree-days.

Mathematically:
GDD $=\left(\mathrm{T}-5.0^{\circ} \mathrm{C}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$
if T is equal to or less than $5.0^{\circ} \mathrm{C}, \mathrm{GDD}=0$.
Daily GDD values are summed to provide totals for the appropriate month, growing season or year.

Heating (HDD) The heating requirement to achieve a stipulated comfort value in an indoor environment. For most purposes, a temperature of less than $18^{\circ} \mathrm{C}$ is considered uncomfortable and supplementary heating is required. On a specific day, the amount by which $18^{\circ} \mathrm{C}$ exceeds the daily average temperature defines the number of heating degree-days for that day.

Mathematically:
HDD $=\left(18^{\circ} \mathrm{C}-\mathrm{T}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$
if T is equal to or greater than $18^{\circ} \mathrm{C}, \mathrm{HDD}=0$.
Monthly and annual values of HDD are obtained by summing daily values.
EXTREME is the highest or lowest value of a particular element recorded during the period in question.
EXTREME ALL YEARS Temporal comparisons at a point are also of value in some types of climatic studies. Therefore, it is desirable to produce the maximum length of reliable climatic record to carry out studies over a period of time. Data are drawn from the following data sets:

Saskatoon, SRC:1963 to 1997
Saskatoon, University of Saskatchewan:1916 to 1963
Saskatoon, City:1892 to 1915.
Station locations, exposures and measurement procedures were subject to change during this time period. Data presented in this column are not adjusted and users are cautioned accordingly.

FROST is recorded on each occasion when the daily minimum temperature is equal to or less than $0^{\circ} \mathrm{C}$.
NORMAL VALUE (1961-1990) In climatology it is often useful to make spatial comparisons of particular element values over a common time period. At an interior continental site such as Saskatoon, a period of 30 years is required to produce statistically stable estimates of the more variable elements. To facilitate spatial comparisons, the World Meteorological Organization recommends the standard normal (average) period January 1st, 1961 to December 31st, 1990 for data analysis. Data derived from CRS conform to this standard, except where noted. The normals for CRS are taken from the normals published by Environment Canada for the standard period. Normals used in SRC CRS annual summaries 1990-1996 were hand-calculated values determined before the official normals were published.

NUMBER OF RECORDING YEARS Due to missing observations, faulty instrument calibration, lost records, etc., only partial data are available especially during the period 1892-1915. The number of years of useful record is therefore cited.

PRECIPITATION (Ppt)

Day is recorded on occasions when the amount of precipitation in a 24-hour period equals or exceeds 0.2 mm water. An asterisk (*) appearing in the average column denotes the occurrence of measurable precipitation on one or more occasions, and that the calculated 30 -year average amounts to less than a trace. The so-called climatological day, beginning at $9 \mathrm{a} . \mathrm{m}$. standard time on the date of reference and ending at $9 \mathrm{a} . \mathrm{m}$. the next morning, was employed in record keeping up to January 1994. On February 1, 1994, after consultation with Environment Canada, record keeping was changed to the 24 -hour period of 0000 hours -2400 hours to conform to their reporting of climatological statistics.

Total is the sum of the daily recorded precipitation. The snowfall component of precipitation is recorded as an equivalent amount of liquid water. For particulars on precipitation measurement procedures and instruments, the reader is referred to the Environment Canada publication "Manual of Climatological Observation's", 2nd Ed., January, 1978. The notation "T" in this column refers to a trace of precipitation (less than 0.2 mm water equivalent). As of August 7, 1993, total precipitation was measured using the Belfort weighing gauge for the winter season and the tipping bucket during frost-free period.

SOIL TEMPERATURE under a short grass surface with normal snow accumulation, is measured according to procedures outlined in the Environment Canada publication "Soil Temperature" January 1, 1976. Depths below surface at which soil temperature measurements are made are: $5 \mathrm{~cm}, 10$ $\mathrm{cm}, 20 \mathrm{~cm}, 50 \mathrm{~cm}, 100 \mathrm{~cm}, 150 \mathrm{~cm}$ and 300 cm . Since soil temperature is affected by profile structure and water content, extrapolation of the measured data is difficult.

SOLAR RADIATION

Diffuse - Total is radiation reaching the earth's surface after having been scattered from the direct solar beam. The instrument used is an Eppley pyranometer with a shade ring (See SOLAR RADIATION-Global- Total).
Global - Total is the sum of the direct solar and diffuse radiation during the period in question. Measurements are carried out on a horizontal surface near ground level and integrated over the whole celestial dome, summing the diffuse and direct components of the solar beam. The temperature-compensated Eppley pyranometer is used. The standard metric unit of measurement is the megajoule per square metre ($\mathrm{MJ} / \mathrm{m}^{2}$). (To facilitate comparison with past years' data: 1.0 $\mathrm{MJ} / \mathrm{m}^{2}=23.895$ langleys). Comparison is provided with a provisional average based on 16 years of data (1975-1990).

SPELLS - Temperature spells are defined as a sequence of days when the daily maximum temperature is higher than or equal to $30^{\circ} \mathrm{C}$ (hot spell) or the daily minimum temperature is lower than or equal to $-30^{\circ} \mathrm{C}$ (cold spell).

SUNRISE/SUNSET times have been included in this report. They have been acquired from the National Research Council, Canada, Herzberg Institute of Astrophysics.

TEMPERATURE

Average Annual is the average of the daily average temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ for one year.
Average Daily is defined as the arithmetic mean of the daily maximum temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ and the daily minimum temperature in degrees Celsius (${ }^{\circ} \mathrm{C}$) for the day in question.
Average Maximum is the average of the daily maximum temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ average over the appropriate time periods. For details concerning measurement procedures, the reader is referred to the Environment Canada publication, " Manual of Climatological Observations", 2nd Ed., January, 1978.
Average Minimum is the average of the daily minimum temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ averaged over the appropriate time periods. Refer to TEMPERATURE-Average Maximum concerning measurement procedures.
Average Monthly is the average of the daily average temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ for the month under consideration.

WIND CHILL FACTOR is a cooling rate based on air temperature and wind speed. It is an approximate indication of the cooling rate of exposed flesh and whether or not protective covering is necessary. It was devised by P. A. Siple while in the Antarctica in 1941 by measuring the time required for the freezing of 250 grams of water at various wind speeds and air temperatures. Due to the unfortunate use of wind chill temperatures, people are often misled to believe that objects will cool down to the given wind chill temperature if left outside. This is not correct as an object will not cool to a lower temperature than its surrounding air temperature. Wind chill is simply a measure of the rate at which heat is lost. It is how cold it feels not how cold it is. (Maybank, 1970)

WIND SPEED

Average (Avg) is the average of the hourly wind speeds for the period in question measured in kilometres per hour (km / h). Average hourly wind speeds are obtained from a RM Young Wind Monitor anemometer at a height of 10 m .

Peak Gust refers to the highest instantaneous value recorded by the anemometer system for the period of reference, irrespective of direction and/or duration. Comparison is with published data for Saskatoon Airport.
see also Beaufort Wind Scale

BIBLIOGRAPHY

Adam, B., 1999. Funnel Clouds Sighted in Area. Star Phoenix, Saskatoon, SK., August 17, 1999.
Beaulieu, C. R., 1999. Personal observation, June 1999.
Christiansen, E.A. (Ed.), 1970. Physical Environment of Saskatoon, Canada. Saskatchewan Research Council, Saskatoon, SK, in cooperation with National Research of Canada, Ottawa, ON.

Cole, F. W., 1980. Introduction to Meteorology. John Wiley \& Sons, Inc., Toronto, ON.
Environment Canada, Atmospheric Environment Service (AES), 2000. 1999 Annual Meteorological Summary, Saskatoon Airport, SK, Saskatoon. AES, Saskatoon, SK.

Environment Canada, Atmospheric Environment Service (AES), 1975. 1974 Annual Meteorological Summary, Saskatoon Airport, SK, Saskatoon. AES, Saskatoon, SK.

Environment Canada, Atmospheric Environment Service, (AES),1992.AES Guidelines for Co-operatiave Climatological Autostation. Environment Canada, Downsview, ON.

Environment Canada, Atmospheric Environment Service (AES), 1993. Canadian Climate Normals 1961-1990. Canadian Climate Centre, Downsview ON.

Environment Canada, Atmospheric Environment Service (AES), 1982. Canadian Climate Normals 1951-1980. Canadian Climate Centre, Downsview ON.

Environment Canada, Atmospheric Environment Service (AES), 1978. Manual of Climatological Observations, 2nd Ed. AES, Downsview, ON.

Environment Canada, Atmospheric Environment Service (AES), 1976. Soil Temperature. AES, Downsview, ON.
Frank Slide Interpretive Centre Web Site, May 1999. http//www.frankslide.com.
Heidorn, K., 1998. The Weather Legacy of Admiral Sir Francis Beaufort in Weather People and History. Spectrum Educational Enterprises, Victoria, BC. http//www.islandnet.com/~see/weather/history/beaufort.html.

Jobin, B., 1999. La Niña Talks Tough, but Fails to Deliver. Star Phoenix, Saskatoon, SK., March 3, 1999
LaLonde, S. B., 1994. Never Sell Your Hen on a Rainy Day, A Handbook of Weather Signs, Rhymes and Reasons. Duck Creek Publications, Kelvington, SK.

Maybank, J. \& S. C. McKercher, 1970. Winter Wind Chill. Saskatchewan Research Council Report P.70-7 3M - Oct. 1970. Saskatoon, SK.

National Research Council of Canada, Herzberg Institute of Astrophysics, 1998. Sunrise -Sunset Tables for Saskatoon 1999 and 2000. National Research Council of Canada, Herzberg Institute of Astrophysics, Victoria, BC.

Huschke, R.E. (Ed.), 1959. Glossary of Meteorology. American Meteorological Society, Boston, MA.
Perreaux, L.,1999. Tornado Warning Issued after Twister Touches Down. Star Phoenix, Saskatoon, SK., May 19, 1999.
Phillips, D. W., 1993. The Day Niagara Falls Ran Dry!: Canadian Weather Facts and Trivia. Key Porter Books Ltd., Toronto, ON.

Phillips, D. W., 1997. 1998 Canadian Weather Trivia Calendar. Fifth House Ltd., Calgary AB.
Phillips, D. W., 1998. 1999 Canadian Weather Trivia Calendar. Fifth House Ltd., Calgary AB.
Phillips, D. W., 1995. 1996 Canadian Weather Trivia Calendar. Fifth House Ltd., Calgary AB.
Phillips, D. W., 1996. Weather Flashes. Canada's Weather Trivia Mini-magazine. Fifth House Ltd., Calgary AB.

Phillips, D. W., 1987. 1988 Canadian Weather Trivia Calendar. Canadian Government Publishing Centre, Ottawa, ON.
Robinson, A., 1999. Warmer than Normal Winter Predicted. Star Phoenix, Saskatoon, SK., October 6, 1999.
Rybak, D., 1999. Personal Communication. Saskatchewan Enviromental Services Centre, Saskatoon, SK.
Smith, Steve and Rick Green, 1995. The Red Green Book: the wit and wisdom of Possum Lodge - plus 100 pages of filler. Macmillan Canada, Toronto, ON.

Wood, R. A., (Ed.) 1996. The Weather Almanac, 7th Ed. Gale Research, Detroit, MI.
World Meteorological Organization, (WMO) 1988. Technical Regulations: General Meteorological Standards and Recommended Practices, 1988 ed., Suppl. No. 2 (IV. 1996), WMO - No. 49. Geneva, Switzerland.

[^0]: Cover photograph
 Saskatoon tornado, west of the city, May 18, 1999
 photo credit: Tom Dehod

[^1]: climatestationsupporters

[^2]: *Cole, 1980
 **Smith, 1995

