## Saskatchewan Research Council <br> CLIMATOLOGICAL REFERENCE STATION SASKATOON



This page is blank


## CLIMATOLOGICAL REFERENCE STATION

SASKATOON

ANNUAL SUMMARY 2003
C. Beaulieu
V. Wittrock

Environment/Minerals Division
Climatology/Aquatic Ecology Section

## ACKNOWLEDGEMENTS

The 2003 data was compiled and recorded by Carol Beaulieu with assistance from Virginia Wittrock, Charlene Hudym and Leanne Crone. Miss Beaulieu was responsible for the monitoring of the site while instrument maintenance was carried out by Brett Smith of the Instrumentation and Electronics Section of the Saskatchewan Research Council (SRC). Elaine Wheaton and Virginia Wittrock assisted with the proofreading and editing of this report. Consultations with Larry Flysak and Don Ryback of the Meteorological Service of Canada (MSC), Saskatoon, SK, were most helpful in verifying and comparing data. Although every caution has been taken to ensure the accuracy of data and information presented, errors may occur. If errors are noticed, we would appreciate being informed so they can be corrected.

Information and data contained in this report shall not be published, copied, placed in a retrieval system or distributed whole or in part without prior written consent of the Saskatchewan Research Council. All references made to this report shall be acknowledged.

Enquiries concerning the SRC Climatological Reference Station (CRS), its data, measurement programs and publications, or becoming a sponsor are most welcome. For further information contact:

| Elaine Wheaton | Virginia Wittrock | Carol Beaulieu | Climatology Section |
| :---: | :---: | :---: | :---: |
| Senior Research Scientist | Research Scientist | Research Technologist | Fax 306-933-7817 |
| 306-933-8179 | $306-933-8122$ | $306-933-8182$ | Saskatchewan Research Council |
| e-mail wheaton@src.sk.ca | e-mail wittrock@src.sk.ca | e-mail beaulieu@src.sk.ca | Web Site Home Page |
|  |  |  | http://www.src.sk.ca |

SASKATCHEWAN RESEARCH COUNCIL CLIMATE REFERENCE STATION SPONSORS, 2003

Saskatchewan<br>Agriculture, Food and Rural<br>Revitalization



COVER PHOTOGRAPH
Untitled©
by Lori Sopher Merkle, Mfg/VAP, SRC

## TABLE OF CONTENTS

Acknowledgements ..... ii
Climate Reference Station sponsors, 2003 ..... ii
Table of Contents ..... iii
Climate Reference Station History ..... 1
What is the Climate Reference Station? ..... 2
Climate Reference Station Outreach 2003 ..... 2
Summaries for 2003
Overview ..... 3
Weather events summaries, 2003
New 2003 daily temperature and precipitation records ..... 4
Cold spells ..... 4
Greatest extreme precipitation events ..... 4
Hot spells ..... 4
Ranking of precipitation and Temperature for 2003. ..... 5
Dates of frost-free season ..... 5
Extreme Winds for 2003 ..... 6
Windchill calculation chart ..... 7
Monthly summaries - tables and graphs
Monthly Average Temperatures and Extreme Value ..... 8
Average annual temperature time series for Saskatoon 'A'. 1900-2003 ..... 9
Average annual temperature time series for CRS, 1964-2003 ..... 9
Total annual precipitation time series for Saskatoon 'A', 1900-2003 ..... 11
Total annual precipitation time series for CRS, 1964-2003 ..... 11
Monthly Precipitation and Extreme Value ..... 11
Monthly heating and cooling degree-days ..... 12
Monthly growing degree-days ..... 13
Monthly bright sunshine ..... 14
Sunrise and sunset at Saskatoon, 2003 and 2004 ..... 15
Monthly global and diffuse solar radiation ..... 16
Daily global and diffuse solar radiation ..... 17
Monthly average soil temperatures at 0900 hrs, 10, 20, 50, 100, 150 and 300 cm ..... 18
Soil temperatures at $1600 \mathrm{~h}, 10 \mathrm{~cm}$ and 20 cm ..... 19
Monthly average wind speed and extreme gusts ..... 20
SRC Climate Reference Station daily temperature record ..... 21
SRC Climate Reference Station daily precipitation record ..... 22
Annual weather summary of elements ..... 23
Monthly weather summaries of elements ..... 24
Instruments used at Saskatoon SRC CRS and Glossary of Terms ..... 36
References and Bibliography ..... 39

Grade 2/3 Riverheights Elementary School Tour, September 30, 2003
photo credit: Ms Rita Johannsson


## CLIMATE REFERENCE STATION HISTORY



Cloud formation looking NE from CRS, July 2003. photo credit: CR Beaulieu

Meteorological observations were first taken at or near Saskatoon by the Royal Northwest Mounted Police in 1889 with temperature only being recorded. There is some disagreement in the early records as to the exact location of the weather observing point, but the majority of the evidence indicates $52^{\circ} 15^{\prime} \mathrm{N}, 106^{\circ} 20^{\prime} \mathrm{W}$, elevation 480 m above sea level as the most probable location. This would place it at Clark's Crossing on the South Saskatchewan River, approximately 16 km northeast of the centre of the City of Saskatoon. There was a settlement at Clark's Crossing at that time as well as 10 to 15 families on either side of the river where Saskatoon is now located.

Little is known about the very early observers; however, the records do show that Major T.H. Keenan took observations from March 1892 until March 1895, and Mr. George Will was the observer from January 1897 until April 1897. It is thought that T. H. Copeland was involved in the observational program from 1895 to May 1, 1901, at which time it was taken over by Mr. Eby, Sr. Mr. Eby, Sr. recorded the observations until his death in 1921, at which time his daughter, Miss E.S. Eby, continued to record the observations. Her brother, Mr. J.M. Eby, recorded the observations beginning in April 1931 until the station was closed October 31, 1942. The Eby station recorded temperature, precipitation and weather notes on fog, thunderstorms, winds and any unusual weather phenomena. Reports were made twice daily, morning and evening.

In 1916, a climatological station was established by the Physics Department of the University of Saskatchewan and continuous observations were kept twice daily until January 15, 1965. The longtime observer was Mr. Sidney Cox. The Saskatchewan Research Council took over the programme in the fall of 1963 at the newly established Climatological Reference Station at latitude $52^{\circ} 09^{\prime} \mathrm{N}$, longitude $106^{\circ} 36^{\prime} \mathrm{W}$ and elevation 497 m asl ${ }^{1}$. The first observer was Terry Beck followed three years later by Orville Olm. ${ }^{2}$ In 1967, Joe Calvert became the primary observer until his retirement in 1983. Ray Begrand succeeded Mr. Calvert until 1988 when Virginia Wittrock became the primary observer. Since 1992, the primary observer has been Carol Beaulieu assisted by Virginia Wittrock, Leanne Crone and Charlene Hudym.

In the summer of 1992, the CRS began to be converted to an automated system of data collection with the installation of a Campbell Scientific data logger and automatic sensors. Elements presently recorded at the site are temperature, precipitation, wind, solar radiation, relative humidity, barometric pressure, soil temperature and snow-on-theground (manual recordings). Temperature, precipitation and radiation data are submitted to Environment Canada.

[^0]${ }^{2}$ Olm 2001

## WHAT IS THE CLIMATE REFERENCE STATION?

The Saskatchewan Research Council's Climate Reference Station (SRC CRS) at Saskatoon is classified as a principal climatological station with supplementary climatological observations. ${ }^{1}$ A reference climatological station's data are intended for the purpose of determining climatic trends. This requires long periods (not less than thirty years) of homogeneous records, where man-made environmental changes have been or are expected to remain at a minimum. Ideally the records should be of sufficient length to enable the identification of secular changes of climate ${ }^{2}$. At our station, hourly readings are taken of elements which include temperature, precipitation amount, humidity, wind, and atmospheric pressure. Our supplemental observations include rate of rainfall, soil temperature, bright sunshine and solar radiation. High quality and consistent climatological observations are maintained providing data sets to meet the current concerns of the effects of climatic change and increased variability.

## Purpose and Benefits

The purpose of the SRC CRS is to provide a record of the observed meteorological elements so that the climate of the area and its changes can be accurately documented and described. Climatological data have assumed new importance as a result of social and environmental issues in which climate is a dominant factor. Climatological information assists in realizing new technological opportunities and social changes. It is necessary and valuable for use in areas such as agriculture, forestry, land use and facility placement, water and energy resources, health and comfort.

The CRS also allows us to:

- evaluate long term climate trends - early warning system for increased frequencies of extreme events such as drought, floods, etc.;
- determine the impacts of climate events on society, economy, health, and ecosystems - e.g. intense rainfall causing flooding and property damage and heat stress with its implications for health;
- do value-added research;
- be part of regional, national and global networks in an important agricultural and ecological area;
- facilitate development of additional programs - e.g. air quality, biodiversity, and climate change monitoring;
- have roles in various programs within SRC including spray drift work, The Boreal Ecosystem Atmosphere Study (BOREAS), and collaborative research with the Western College of Veterinary Medicine and the College of Agriculture, University of Saskatchewan, for example; and - provide climate data to governments, universities, insurance agencies, lawyers, agricultural sectors, chemical companies, schools, building science, construction firms, media, transportation studies, accident studies, wildlife studies, tourism groups and interested individuals.

The goals of the Climate Reference Station are first, to maintain the high quality of data gathered over its more than thirty-nine years of existence at its current location and, second, to continue to monitor a large variety of elements. These various elements combined with the long-term collection period as well as the stable location allow CRS to be a very valuable climate information collection station.

## CLIMATE REFERENCE STATION OUTREACH 2003

Outreach activities continued in 2003 at the Climate Reference Station. Presentations on 'Weather Instruments and How They Work' which were presented were well received by students and staff with positive post-presentation feedback. Approximately 60 children from 2 urban schools, grades 2 to 4 participated in the demonstrations. With the help of enthusiastic volunteers, students received hands-on experience with instruments used to measure temperature, precipitation, wind and solar radiation.
${ }^{1}$ Environment Canada 1992
${ }^{2}$ World Meteorological Organization 1988

## SUMMARIES FOR 2003

## Overview

Data concerning temperature, precipitation, wind speed and direction, bright sunshine, solar radiation, and soil temperature, recorded at the Saskatchewan Research Council (SRC) Climatological Reference Station (CRS) ( $52^{\circ} 09^{\prime} \mathrm{N}, 106^{\circ} 36^{\prime} \mathrm{W}, 497 \mathrm{~m}$ asl), are presented for the year 2003 and compared with the long-term (circa 1900-2002) and standard-period (1971-2000) records.

The 2003 annual temperatures were almost one degree above normal for the minimum and average while the maximum temperature was a full degree. The warmth of 2003 is reflected in its ranking when compared to the previous forty years at the Climate Reference Station. The annual minimum temperature $\left(-2.5^{\circ} \mathrm{C}\right)$ tied for $30^{\text {th }}$ place for the coldest temperature in 40 years while the annual maximum temperature $\left(9.3^{\circ} \mathrm{C}\right)$ ranked as the $9^{\text {th }}$ warmest. 2003 ranked overall as $8^{\text {th }}$ warmest year.

The year's beginning gave no indication of the ultimate warm rankings for the year. February and March were colder than normal with each recording four daily minimum temperature of below $-30^{\circ} \mathrm{C}$. Surprisingly, March was also notable for producing the year's coldest temperature of $-33.9^{\circ} \mathrm{C}$. The major influences of the above normal annual temperatures were a very hot August and a warm December. Fifteen days in August recorded temperatures above $30^{\circ} \mathrm{C}$ including three continuous days over $32^{\circ} \mathrm{C}$ to constitute a heat wave. Out of the nine maximum daily records set for the year, three were in August and one was in December.

The above average temperatures are reflected in the degree-days. Heating degree-days were above normal for the cool months of February, March and November. This was easily offset by the rest of the year resulting in an annual total almost $5 \%$ less than normal. Cooling degree-days came close to doubling in July and tripling in August to create an annual total over twice the normal. Annual extreme cooling degree-days (base $24^{\circ} \mathrm{C}$ ) quadrupled due to the high August temperatures. The frost-free season's length continued above average for the $11^{\text {th }}$ year in a row due to a late first fall frost date. Annual growing degree-days were up $21 \%$ while the frost-free growing season was $26 \%$ above normal.

Drought-like conditions persisted into 2003. By March, only $42 \%$ of normal precipitation had been measured at CRS. April saw a recovery with an $80 \%$ more monthly precipitation than normal but May and June precipitation were well below normal dashing hopes for good soil moisture for crop production. July and August saw near normal rainfall. Unfortunately, it was not evenly distributed but came as three downpours; one of which produced a daily record for July $6^{\text {th }}$. November and December closed the year with extreme dry conditions resulting in 2003 being the third driest year since 1964. Only 2001 ( 165.8 mm ) and 1987 ( 232.4 mm ) were drier.

A bright highlight in the year was the slightly above average bright sunshine hours. The first eight months seesawed from being above normal to below. From October to the end of the year, bright sunshine hours were well above average completing the year with $4 \%$ more hours of bright sunshine than normal. The number of days with bright sunshine was near normal.

During April, May, June, July and October, CRS recorded 'Strong Gale' force wind between $76 \mathrm{~km} / \mathrm{h}$ and $88 \mathrm{~km} / \mathrm{h}$ which, with the exception of one from the west, blew from the west-northwest. June recorded the most wind gusts (6) of over $51 \mathrm{~km} / \mathrm{h}$ including one measured at $82.8 \mathrm{~km} / \mathrm{h}$. The strongest wind of the year was $87.8 \mathrm{~km} / \mathrm{h}$ recorded on May $16^{\text {th }}$.
 photo credit: CR Beaulieu

Weather Events Summaries, 2003

| NEW 2003 DAILY TEMPERATURE AND PRECIPITATION RECORDS |  |  |  |
| :---: | :---: | :---: | :---: |
| TYPE | DAY | $\begin{gathered} \text { NEW } \\ \text { RECORD } \end{gathered}$ | OLD RECORD/ year |
| Maximum Daily Temperature ${ }^{\circ} \mathrm{C}$ | June 19 | 35.5 | 33.0/1989 |
|  | July 17 | 35.2 | 33.91967\&2002 |
|  | July 23 | 31.0 | 30.6/1978 |
|  | August 15 | 34.4 | 33.3/1973 |
|  | August 16 | 38.9 | 34.4/1973 |
|  | August 19 | 35.8 | 33.9/1972 |
|  | October 5 | 26.0 | 25.0/1980 |
|  | October 21 | 21.6 | 20.0/1985 |
|  | December 20 | 6.6 | 6.6/1994 |
| Minimum Daily Temperature ${ }^{\circ} \mathrm{C}$ | February 22 | -32.2 | -30.6/1972 |
|  | February 24 | -33.5 | -30.6/1972 |
|  | March 4 | -30.8 | -30.6/1972 |
|  | March 7 | -33.9 | -31.1/1974 |
| Daily Precipitation mm | February 17 | 4.1 | 2.5/1998 |
|  | April 13 | 8.4 | 3.0/1979 |
|  | June 2 | 16.4 | 8.9/1976 |
|  | July 6 | 28.4 | 24.2/2000 |
|  | July 13 | 7.2 | 4.6/1976\&1999 |
|  | August 8 | 22.4 | 21.8/1995 |
|  | September 9 | 27.4 | 20.0/1983 |
|  | October 15 | 1.6 | 1.0/1968\&1983 |


| COLD SPELL <br> (less than or equal to $-30^{\circ} \mathrm{C}$ ) |  |  |
| :---: | :---: | :---: |
|  | DAY | TEMPERATURE ${ }^{\circ}$ C |
|  | 22 | -31.1 |
|  | 25 | -30.9 |
|  | 26 | -31.6 |
| February | 21 | -32.9 |
|  | 22 | -32.2 |
|  | 23 | -31.9 |
|  | 24 | -33.5 |
|  | 1 | -31.3 |
|  | 7 | -30.8 |
| Extreme | 7 | -33.9 |
|  | 8 | -33.2 |



| GREATEST EXTREME PRECIPITATION EVENTS (mm)* |  |  |
| :---: | :---: | :---: |
| PERIOD | DATE | AMOUNT |
| 0.5 hour | September 9 | 8.8 |
| 0.5 hour | June 2 | 8.4 |
| 1 hour | September 9 | 13.8 |
| 1 hour | June 2 | 10.2 |
| 2 hours | September 9 | 20.6 |
| 2 hours | August 8 | 12.8 |
| 24 hours | July 6 | 28.4 |
| 24 hours | September 9 | 27.4 |
| *recorded by tipping bucket April $22^{\text {sad }}$ to September $30^{\text {th }}$ |  |  |


| HOT SPELL <br> (greater than or equal to $30^{\circ} \mathrm{C}$ ) |  |  |
| :---: | :---: | :---: |
| MONTH | DAY | TEMPERATURE ${ }^{\circ} \mathrm{C}$ |
| June | 19 | 35.5 |
|  | 30 | 31.7 |
| July | 1 | 30.4 |
|  | 12 | 33.9 |
|  | 17 | 35.2 |
|  | 18 | 30.0 |
|  | 22 | 32.0 |
|  | 23 | 31.0 |
|  | 27 | 32.4 |
| August | 1 | 30.4 |
|  | 2 | 31.2 |
|  | 7 | 30.9 |
|  | 10 | 32.9 |
|  | 11 | 31.3 |
|  | 12 | 31.5 |
|  | 13 | 35.6 |
|  | 14 | 32.1 |
|  | 15 | 34.4 |
|  | 16 | 38.9 |
|  | 18 | 33.7 |
|  | 19 | 35.8 |
|  | 21 | 30.2 |
|  | 22 | 32.9 |
|  | 23 | 30.7 |
| Sept | 4 | 33.6 |
|  | 6 | 30.4 |
|  | 7 | 30.5 |
| Extreme | August 16 | 38.9 |

## Ranking of Precipitation and Temperature for 2003

| DRIEST MONTH <br> BY \% OF NORMAL <br> PRECIPITATION | RANKING | DRIEST MONTH <br> BY PRECIPITATION <br> AMOUNT (mm) |  |  |
| ---: | :--- | ---: | ---: | :--- |
| December | 17.5 | 1 | 3.2 | December |
| November | 26.4 | 2 | 3.9 | November |
| March | 29.6 | 3 | 4.8 | March |
| May | 30.2 | 4 | 7.2 | January |
| January | 39.6 | 5 | 8.1 | February |
| June | 52.8 | 6 | 11.5 | October |
| February | 60.9 | 7 | 13.4 | May |
| October | 70.1 | 8 | 31.4 | June |
| August | 99.4 | 9 | 35.8 | September |
| July | 101.4 | 10 | 36.0 | August |
| September | 121.8 | 11 | 43.6 | April |
| April | 184.7 | 12 | 58.8 | July |


| WARMEST <br> ANNUAL MAXIMUM <br> TEMPERATURE ${ }^{\circ}$ C |  | COLDEST <br> ANNUAL MINIMUM <br> TEMPERATURE ${ }^{\circ}$ C |  | WARMEST <br> ANNUAL <br> AVERAGE <br> TEMPERATURE ${ }^{\circ}$ C | RANKING |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1987 | 11.6 | 1966 | -5.5 | 1987 | 5.4 | 1 |
| 2001 | 10.8 | 1979 | -5.3 | 2001 | 4.6 | 2 |
| 1981 | 10.5 | 1982 | -5.3 | 1981 | 4.5 | 3 |
| 1988 | 10.1 | 1965 | -5.3 | 1998 | 4.3 | 4 |
| 1998 | 10.1 | 1996 | -5.2 | 1999 | 4.2 | 5 |
| 1999 | 9.8 | 1975 | -5.1 | 1988 | 3.9 | 6 |
| 1976 | 9.5 | 1972 | -4.8 | 1997 | 3.5 | 7 |
| 1997 | 9.5 | 1985 | -4.8 | 2003 | 3.4 | 8 |
| 2003 | 9.3 | 1967 | -4.7 | 1991 | 3.2 | 9 |
| 1986 | 9.0 | 1974 | -4.7 | 1986 | 3.2 | 10 |
| 1991 | 8.9 | 1971 | -4.6 | 1976 | 3.0 | 11 |
| 2000 | 8.8 | 1969 | -4.6 | 1992 | 3.0 | 12 |
| 1984 | 8.7 | 1978 | -4.6 | 2000 | 3.0 | 13 |
| 1990 | 8.7 | 1970 | -4.0 | 1984 | 2.9 | 14 |
| 1977 | 8.6 | 1973 | -4.0 | 1993 | 2.8 | 15 |
| 1980 | 8.6 | 1980 | -3.8 | 2002 | 2.8 | 16 |
| 1992 | 8.5 | 1989 | -3.8 | 1964 | 2.7 | 17 |
| 2002 | 8.5 | 1977 | -3.6 | 1994 | 2.7 | 18 |
| 1994 | 8.5 | 1990 | -3.6 | 1990 | 2.6 | 19 |
| 1989 | 8.3 | 1976 | -3.5 | 1977 | 2.5 | 20 |

September 7, 2003 Thunderstorm photo credit: A Sherdahl
Dates and Duration of the Frost-free Season

| YEAR | DATE <br> OF LAST <br> SPRING <br> FROST | DATE OF <br> FIRST <br> FALL <br> FROST | LENGTH OF <br> SEASON <br> (days) |
| :---: | :---: | :---: | :---: |
| 1964 | May 31 | Sept 26 | 117 |
| 1965 | May 27 | Sept 05 | 100 |
| 1966 | May 19 | Sept 13 | 116 |
| 1967 | Jun 06 | Sept 23 | 108 |
| 1968 | May 19 | Sept 25 | 128 |
| 1969 | Jun 14 | Sept 15 | 92 |
| 1970 | May 19 | Sept 12 | 115 |
| 1971 | May 18 | Sept 20 | 124 |
| 1972 | May-08 | Sept 04 | 118 |
| 1973 | May 06 | Sept 14 | 120 |
| 1974 | May 25 | Sept 02 | 99 |
| 1975 | May 21 | Sept 11 | 112 |
| 1976 | May 06 | Aug 28 | 113 |
| 1977 | May 01 | Aug 31 | 121 |


| YEAR | DATE <br> OF LAST <br> SPRING <br> FROST | DATE OF <br> FIRST <br> FALL <br> FROST | LENGTH OF <br> SEASON <br> (days) |
| :---: | :---: | :---: | :---: |
| 1978 | May 30 | Sept 30 | 112 |
| 1979 | May 30 | Aug 13 | 74 |
| 1980 | May 14 | Aug 26 | 103 |
| 1981 | May 24 | Sept 03 | 101 |
| 1982 | May 29 | Aug 27 | 89 |
| 1983 | May 24 | Sept 13 | 111 |
| 1984 | May 24 | Aug 31 | 98 |
| 1985 | Jun 04 | Sept 06 | 93 |
| 1986 | May 17 | Sept 06 | 111 |
| 1987 | May 21 | Oct 06 | 137 |
| 1988 | May 02 | Sept 19 | 139 |
| 1989 | May 28 | Sept 10 | 104 |
| 1990 | May 13 | Sept 21 | 130 |
| 1991 | May 27 | Sept 18 | 113 |


| YEAR | DATE <br> OF LAST <br> SPRING <br> FROST | DATE OF <br> FIRST <br> FALL <br> FROST | LENGTH OF <br> SEASON <br> (days) |
| :---: | :---: | :---: | :---: |
| 1992 | May 23 | Sept 14 | 113 |
| 1993 | May 17 | Sept 14 | 119 |
| 1994 | May 09 | Oct 04 | 147 |
| 1995 | May 22 | Sept 18 | 118 |
| 1996 | May 12 | Sept 29 | 139 |
| 1997 | May 14 | Oct 05 | 143 |
| 1998 | May 13 | Sept 30 | 139 |
| 1999 | May 09 | Sept 27 | 140 |
| 2000 | May 17 | Sept 23 | 128 |
| 2001 | May 10 | Oct 04 | 146 |
| 2002 | May 23 | Sept 23 | 122 |
| 2003 | May 18 | Sept 29 | 133 |
| 1971 | May 18 | Sept 14 | 117 |
| 2000 |  |  |  |
| Normal | May |  |  |

Extreme Winds for $2003{ }^{1}$

| Wind Speeds | JANUARY |  |  | FEBRUARY |  |  | MARCH |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Day | Speed | Direction | Day | Speed | Direction | Day | Speed | Direction |
| >=51 but <63 | 17 | 56.0 | NW | 07 | 57.2 | N |  |  |  |
| NEAR GALE | 26 | 51.4 | SSE | 11 | 57.7 | N |  |  |  |
| $\begin{gathered} >=63 \text { but }<76 \\ \text { GALE } \end{gathered}$ | 08 | 65.5 | WNW |  |  |  | 23 | 73.3 | W |
| Wind Speeds | APRIL |  |  | MAY |  |  | JUNE |  |  |
|  | Day | Speed | Direction | Day | Speed | Direction | Day | Speed | Direction |
| >=51 but <63 | 02 | 55.5 | E | 17 | 56.0 | W | 03 | 55.8 | SW |
| NEAR GALE | 03 | 55.5 | E | 21 | 52.4 | N | 05 | 51.7 | NW |
|  |  |  |  | 25 | 55.8 | ESE | 19 | 54.9 | S |
|  |  |  |  |  |  |  | 23 | 53.3 | WSW |
| $\begin{gathered} >=63 \text { but }<76 \\ \text { GALE } \end{gathered}$ |  |  |  | 29 | 67.2 | NNW | 20 | 72.6 | WSW |
| $>=76 \text { but }<88$ <br> STRONG GALE | 09 | 77.6 | WNW | 16 | 87.8 | WNW | 27 | 82.8 | WNW |


| Wind Speeds | JULY |  |  | AUGUST |  |  | SEPTEMBER |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Day | Speed | Direction | Day | Speed | Direction | Day | Speed | Direction |
| >=51 but <63 | 03 | 57.7 | NW | 11 | 51.2 | ESE | 09 | 57.0 | SW |
| NEAR GALE | 10 | 54.5 | NW | 24 | 57.1 | WNW | 25 | 55.0 | NW |
|  |  |  |  | 27 | 55.1 | ESE |  |  |  |
| >=63 but < 76 | 02 | 72.9 | W | 08 | 64.8 | WNW | 10 | 67.7 | SW |
| GALE |  |  |  |  |  |  | 23 | 67.7 | WNW |
| >=76 but <88 | 13 | 78.5 | W |  |  |  |  |  |  |
| STRONG GALE |  |  |  |  |  |  |  |  |  |
| Wind Speeds | OCTOBER |  |  | DECEMBER |  |  | Beaufort Wind Scale Designation |  |  |
|  | Day | Speed | Direction | Day | Speed | Direction |  |  |  |  |  |
| >=51 but <63 | 09 | 57.9 | W | 05 | 54.1 | SSE |  |  |  |  |  |
| NEAR GALE | 24 | 60.4 | WNW |  |  |  |  |  |  |
| >=63 but < 76 | 27 | 75.9 | NW |  |  |  |  |  |  |
| GALE |  |  |  |  |  |  |  |  |  |
| >=76 but <88 | 23 | 79.0 | WNW |  |  |  |  |  |  |
| STRONG GALE |  |  |  |  |  |  |  |  |  |



10m tower, October 2003. photo credit: CR Beaulieu

## Windchill Calculation Chart ${ }^{1}$

 (revised 2001)
where $\mathrm{T}=$ Air temperature $\left({ }^{\circ} \mathrm{C}\right)$ and $\mathrm{V}=$ Observed wind speed at 10 m elevation $(\mathrm{km} / \mathrm{h})$.

## Approximate Thresholds:

| Risk of frostbite in prolonged exposure: wind <br> chill below | $-\mathbf{- 2 5}$ |  |
| :--- | :---: | :--- |
| Frostbite possible in 10 minutes at | -35 | Warm skin, suddenly exposed. Shorter time if skin is cool at <br> the start. |
| Frostbite possible in less than 2 minutes at | -60 | Warm skin, suddenly exposed. Shorter time if skin is cool at <br> the start. |

[^1]
## Monthly Average Temperatures and Extreme Values, 2003

| MONTH | AVERAGE MAXIMUM TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ ) |  | AVERAGE MINIMUM TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ ) |  | AVERAGE TEMPERATURE ( $\left.{ }^{\circ} \mathrm{C}\right)$ |  | EXTREME VALUES FOR TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2003 | Normal | 2003 | Normal | 2003 | Normal | Maximum/Date | Minimum/Date |
| January | -10.3 | -11.6 | -20.3 | -21.8 | -15.3 | -16.7 | 5.4/08 | -31.6/26 |
| February | -10.1 | -7.7 | -20.2 | -17.6 | -15.2 | -12.6 | -1.5/07 | -33.5/24 |
| March | -2.8 | -0.7 | -13.3 | -10.5 | -8.0 | -5.6 | 12.9/30 | -33.9/07 |
| April | 10.8 | 10.7 | 0.6 | -1.7 | 5.7 | 4.5 | 23.7/22 | -10.9/04 |
| May | 20.2 | 18.6 | 5.7 | 4.7 | 13.0 | 11.6 | 28.5/25 | -2.0/11 |
| June | 23.3 | 22.6 | 10.2 | 9.5 | 16.7 | 16.0 | 35.5/19 | 4.0/10\&24 |
| July | 26.7 | 24.8 | 12.9 | 11.5 | 19.8 | 18.2 | 35.2/17 | 8.6/03 |
| August | 28.9 | 24.6 | 14.3 | 10.4 | 21.6 | 17.5 | 38.9/16 | 7.1/26 |
| September | 18.2 | 18.1 | 6.1 | 4.9 | 12.2 | 11.6 | 33.6/04 | -4.3/30 |
| October | 13.7 | 10.8 | 1.0 | -1.3 | 7.4 | 4.8 | 26.0/05 | -11.7/31 |
| November | -3.7 | -1.4 | -13.8 | -10.3 | -8.8 | -5.9 | 5.4/16 | -24.4/22 |
| December | -3.0 | -9.0 | -12.6 | -18.6 | -7.8 | -13.9 | 6.6/20 | -25.6/11 |
| Average | 9.3 | 8.3 | -2.5 | -3.4 | 3.4 | 2.5 |  |  |



Average Annual Temperature Time Series for Saskatoon 'A'. 1900-2003

data source: Environment Canada, 2002a, 2002 2003. Goble 2002. U.S. Geological Survey, n.d.

Average Annual Temperature Time Series for CRS, 1964-2003


Total Annual Precipitation Time Series for Saskatoon 'A’, 1900-2003

data source: Environment Canada, 2002a, 2002b, 2003. Goble 2002. U.S. Geological Survey n.d.

Total Annual Precipitation Time Series for CRS, 1964-2003


Monthly Precipitation and Extreme Values, 2003

| MONTH | PRECIPITATION$(\mathrm{mm})$ |  |  | CUMULATIVE PRECIPITATION (mm) |  |  | EXTREME VALUE (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2003 | Normal | \% of Normal | 2003 | Normal | \% of Normal | Value/Date |
| January | 7.2 | 18.2 | 39.6 | 7.2 | 18.2 | 39.6 | 2.1/26 |
| February | 8.1 | 13.3 | 60.9 | 15.3 | 31.5 | 48.6 | 4.1/17 |
| March | 4.8 | 16.2 | 29.6 | 20.1 | 47.7 | 42.1 | 1.5/23 |
| April | 43.6 | 23.6 | 184.7 | 63.7 | 71.3 | 89.3 | 14.7/26 |
| May | 13.4 | 44.3 | 30.2 | 77.1 | 115.6 | 66.7 | 6.4/16 |
| June | 31.4 | 59.5 | 52.8 | 108.5 | 175.1 | 62.0 | 16.4/02 |
| July | 58.8 | 58.0 | 101.4 | 167.3 | 233.1 | 71.8 | 28.4/06 |
| August | 36.0 | 36.2 | 99.4 | 203.3 | 269.3 | 75.5 | 22.4/08 |
| September | 35.8 | 29.4 | 121.8 | 239.1 | 298.7 | 80.0 | 27.4/09 |
| October | 11.5 | 16.4 | 70.1 | 250.6 | 315.1 | 79.5 | 7.7/26 |
| November | 3.9 | 14.8 | 26.4 | 254.5 | 329.9 | 77.1 | 1.8/04 |
| December | 3.2 | 18.3 | 17.5 | 257.7 | 348.2 | 74.0 | 0.7/29 |
| Total | 257.7 | 348.2 | 74.0 |  |  |  |  |



## Monthly Heating and Cooling Degree-days, 2003

| MONTH | HEATING DEGREE-DAYS Base $18^{\circ} \mathrm{C}$ |  | CUMULATIVE HEATING DEGREE-DAYS Base $18^{\circ} \mathrm{C}$ |  | COOLING DEGREE-DAYS Base $18^{\circ} \mathrm{C}$ |  | CUMULATIVE COOLING DEGREE-DAYS Base $18^{\circ} \mathrm{C}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2003 | Normal | 2003 | Normal | 2003 | Normal | 2003 | Normal |
| January | 1033.1 | 1076.9 | 1033.1 | 1076.9 | 0.0 | 0.0 | 0.0 | 0.0 |
| February | 928.7 | 886.3 | 1961.8 | 1963.2 | 0.0 | 0.0 | 0.0 | 0.0 |
| March | 807.0 | 732.1 | 2768.8 | 2695.3 | 0.0 | 0.0 | 0.0 | 0.0 |
| April | 368.0 | 420.7 | 3136.8 | 3116.0 | 0.0 | 0.3 | 0.0 | 0.3 |
| May | 166.2 | 204.4 | 3303.0 | 3320.4 | 10.2 | 7.4 | 10.2 | 7.7 |
| June | 67.1 | 82.8 | 3370.1 | 3403.2 | 29.4 | 22.3 | 39.6 | 30.0 |
| July | 16.8 | 35.3 | 3386.9 | 3438.5 | 73.3 | 40.7 | 112.9 | 70.7 |
| August | 13.2 | 57.7 | 3400.1 | 3496.2 | 126.2 | 42.5 | 239.1 | 113.2 |
| September | 192.7 | 198.9 | 3592.8 | 3695.1 | 18.3 | 5.8 | 257.4 | 119.0 |
| October | 329.7 | 410.2 | 3922.5 | 4105.3 | 0.0 | 0.1 | 257.4 | 119.1 |
| November | 804.0 | 715.8 | 4726.5 | 4821.1 | 0.0 | 0.0 | 257.4 | 119.1 |
| December | 800.7 | 987.7 | 5527.2 | 5808.8 | 0.0 | 0.0 | 257.4 | 119.1 |
| Total | 5527.2 | 5808.8 |  |  | 257.4 | 119.1 |  |  |




Monthly Growing Degree-days, 2003

| MONTH | GROWING DEGREE-DAYS Base $5^{\circ} \mathrm{C}$ |  | CUMULATIVE GROWING DEGREE-DAYS Base $5^{\circ} \mathrm{C}$ |  | FROST-FREE GROWING DEGREE-DAYS Base $5^{\circ} \mathrm{C}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2003 | Normal | 2003 | Normal | 2003 | Cumulative |
| January | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
| February | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
| March | 1.6 | 2.4 | 1.6 | 2.4 |  |  |
| April | 104.8 | 61.3 | 106.4 | 63.7 |  |  |
| May | 248.1 | 211.6 | 354.5 | 275.3 | 146.1 | 146.1 |
| June | 352.3 | 331.5 | 706.8 | 606.8 | 352.3 | 498.4 |
| July | 459.5 | 408.4 | 1166.3 | 1015.2 | 459.5 | 957.9 |
| August | 516.0 | 387.8 | 1682.3 | 1403.0 | 516.0 | 1473.9 |
| September | 217.1 | 203.5 | 1899.4 | 1606.5 | 217.1 | 1691.0 |
| October | 120.1 | 63.7 | 2019.5 | 1670.2 |  |  |
| November | 0.0 | 2.6 | 2019.5 | 1672.8 |  |  |
| December | 0.0 | 0.1 | 2019.5 | 1672.9 |  |  |
| Total | 2019.5 | 1672.9 |  |  | 1691.0 |  |




Monthly Bright Sunshine, 2003

| MONTH | BRIGHT SUNSHINE (hours) |  |  |  |  | CUMULATIVE BRIGHT SUNSHINE (hours) |  | NUMBER OF BRIGHT SUNSHINE DAYS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2003 | Normal | \% of Normal | Possible* | \% of Possible | 2003 | Normal | 2003 | Normal |
| January | 124.9 | 103.3 | 120.9 | 258.9 | 48.2 | 124.9 | 103.3 | 26 | 23.8 |
| February | 110.0 | 132.3 | 83.1 | 278.5 | 39.5 | 234.9 | 235.6 | 19 | 24.2 |
| March | 209.0 | 175.2 | 119.3 | 368.8 | 56.7 | 443.9 | 410.8 | 29 | 27.1 |
| April | 180.5 | 225.2 | 80.2 | 417.9 | 43.2 | 624.4 | 636.0 | 19 | 27.3 |
| May | 289.0 | 267.1 | 108.2 | 487.1 | 59.3 | 913.4 | 903.1 | 31 | 29.5 |
| June | 240.7 | 277.2 | 86.8 | 500.0 | 48.1 | 1154.1 | 1180.3 | 30 | 28.5 |
| July | 321.0 | 305.7 | 105.0 | 502.1 | 63.9 | 1475.1 | 1486.0 | 30 | 30.3 |
| August | 274.2 | 280.8 | 97.7 | 453.1 | 60.5 | 1749.3 | 1766.8 | 29 | 30.1 |
| September | 182.7 | 186.0 | 98.2 | 379.7 | 48.1 | 1932.0 | 1952.8 | 29 | 27.0 |
| October | 198.2 | 157.9 | 125.5 | 329.8 | 60.1 | 2130.2 | 2110.7 | 28 | 27.0 |
| November | 146.0 | 98.0 | 149.0 | 264.5 | 55.2 | 2276.2 | 2208.7 | 27 | 22.2 |
| December | 113.6 | 85.4 | 133.0 | 242.4 | 46.9 | 2389.8 | 2294.1 | 25 | 22.8 |
| Total | 2389.8 | 2294.1 | 104.2 | 4482.8 | 53.3 |  |  | 322 | 319.8 |

* Possible Bright Sunshine hours calculated from Nat. Res. Council of Canada, Hertzberg Institute of Astrophysics sunrise/set table for 2003


Sunrise ${ }^{1}$ and Sunset ${ }^{1}$ at Saskatoon, 2003 and 2004 ${ }^{2}$
(local time in hours and minutes)

| 2003 | JANUARY |  | FEBRUARY |  | MARCH |  | APRIL |  | MAY |  | JUNE |  | JULY |  | AUGUST |  | SEPTEMBER |  | October |  | NOVEMBER |  | DECEMBER |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | Rise | Set |
| 1 | 9:15 | 17:05 | 8:47 | 17:54 | 7:53 | 18:46 | 6:42 | 19:40 | 5:37 | 20:32 | 4:52 | 21:17 | 4:50 | 21:30 | 5:27 | 20:57 | 6:18 | 19:54 | 7:07 | 18:45 | 8:01 | 17:38 | 8:53 | 16:58 |
| 2 | 9:15 | 17:06 | 8:45 | 17:56 | 7:51 | 18:48 | 6:39 | 19:42 | 5:35 | 20:33 | 4:51 | 21:18 | 4:51 | 21:30 | 5:29 | 20:56 | 6:19 | 19:52 | 7:09 | 18:42 | 8:03 | 17:36 | 8:54 | 16:58 |
| 3 | 9:15 | 17:07 | 8:44 | 17:57 | 7:48 | 18:49 | 6:37 | 19:44 | 5:33 | 20:35 | 4:50 | 21:20 | 4:52 | 21:30 | 5:31 | 20:54 | 6:21 | 19:50 | 7:10 | 18:40 | 8:05 | 17:35 | 8:55 | 16:57 |
| 4 | 9:15 | 17:08 | 8:42 | 17:59 | 7:46 | 18:51 | 6:35 | 19:45 | 5:31 | 20:37 | 4:50 | 21:21 | 4:52 | 21:29 | 5:32 | 20:52 | 6:23 | 19:48 | 7:12 | 18:38 | 8:07 | 17:33 | 8:57 | 16:57 |
| 5 | 9:14 | 17:10 | 8:41 | 18:01 | 7:44 | 18:53 | 6:32 | 19:47 | 5:29 | 20:38 | 4:49 | 21:22 | 4:53 | 21:29 | 5:34 | 20:50 | 6:24 | 19:45 | 7:14 | 18:35 | 8:09 | 17:31 | 8:58 | 16:56 |
| 6 | 9:14 | 17:11 | 8:39 | 18:03 | 7:42 | 18:55 | 6:30 | 19:49 | 5:27 | 20:40 | 4:48 | 21:22 | 4.54 | 21:28 | 5:35 | 20:49 | 6:26 | 19:43 | 7:15 | 18:33 | 8:10 | 17:29 | 8:59 | 16:56 |
| 7 | 9:14 | 17:12 | 8:37 | 18:05 | 7:39 | 18:57 | 6:28 | 19:51 | 5:26 | 20:42 | 4:48 | 21:23 | 4:55 | 21:27 | 5:37 | 20:47 | 6:27 | 19:41 | 7:17 | 18:31 | 8:12 | 17:28 | 9:00 | 16:55 |
| 8 | 9:13 | 17:14 | 8:35 | 18:07 | 7:37 | 18:58 | 6:26 | 19:52 | 5:24 | 20:43 | 4:47 | 21:24 | 4:56 | 21:27 | 5:38 | 20:45 | 6:29 | 19:38 | 7:19 | 18:28 | 8:14 | 17:26 | 9:02 | 16:55 |
| 9 | 9:13 | 17:15 | 8:33 | 18:09 | 7:35 | 19:00 | 6:23 | 19:54 | 5:22 | 20:45 | 4:47 | 21:25 | 4:57 | 21:26 | 5:40 | 20:43 | 6:31 | 19:36 | 7:21 | 18:26 | 8:16 | 17:24 | 9:03 | 16:55 |
| 10 | 9:12 | 17:16 | 8:32 | 18:11 | 7:33 | 19:02 | 6:21 | 19:56 | 5:20 | 20:46 | 4:47 | 21:26 | 4:58 | 21:25 | 5:42 | 20:41 | 6:32 | 19:34 | 7:22 | 18:24 | 8:18 | 17:23 | 9:04 | 16:54 |
| 11 | 9:11 | 17:18 | 8:30 | 18:12 | 7:30 | 19:04 | 6:19 | 19:57 | 5:19 | 20:48 | 4:46 | 21:26 | 4:59 | 21:24 | 5:43 | 20:39 | 6:34 | 19:31 | 7:24 | 18:22 | 8:19 | 17:21 | 9:05 | 16:54 |
| 12 | 9:11 | 17:19 | 8:28 | 18:14 | 7:28 | 19:06 | 6:17 | 19:59 | 5:17 | 20:50 | 4:46 | 21:27 | 5:00 | 21:24 | 5:45 | 20:37 | 6:36 | 19:29 | 7:26 | 18:19 | 8:21 | 17:20 | 9:06 | 16:54 |
| 13 | 9:10 | 17:21 | 8:26 | 18:16 | 7:26 | 19:07 | 6:14 | 20:01 | 5:16 | 20:51 | 4:46 | 21:28 | 5:01 | 21:23 | 5:46 | 20:35 | 6:37 | 19:27 | 7:28 | 18:17 | 8:23 | 17:18 | 9:07 | 16:54 |
| 14 | 9:09 | 17:22 | 8:24 | 18:18 | 7:23 | 19:09 | 6:12 | 20:03 | 5:14 | 20:53 | 4:45 | 21:28 | 5:02 | 21:22 | 5:48 | 20:33 | 6:39 | 19:24 | 7:29 | 18:15 | 8:25 | 17:17 | 9:08 | 16:54 |
| 15 | 9:08 | 17:24 | 8:22 | 18:20 | 7:21 | 19:11 | 6:10 | 20:04 | 5:12 | 20:54 | 4:45 | 21:29 | 5:04 | 21:21 | 5:50 | 20:31 | 6:41 | 19:22 | 7:31 | 18:13 | 8:27 | 17:15 | 9:09 | 16:54 |
| 16 | 9:07 | 17:26 | 8:20 | 18:22 | 7:19 | 19:13 | 6:08 | 20:06 | 5:11 | 20:56 | 4:45 | 21:29 | 5:05 | 21:20 | 5:51 | 20:29 | 6:42 | 19:20 | 7:33 | 18:11 | 8:28 | 17:14 | 9:10 | 16:55 |
| 17 | 9:06 | 17:27 | 8:18 | 18:24 | 7:17 | 19:14 | 6:06 | 20:08 | 5:09 | 20:57 | 4:45 | 21:30 | 5:06 | 21:18 | 5:53 | 20:27 | 6:44 | 19:17 | 7:35 | 18:09 | 8:30 | 17:12 | 9:10 | 16:55 |
| 18 | 9:05 | 17:29 | 8:16 | 18:26 | 7:14 | 19:16 | 6:03 | 20:09 | 5:08 | 20:59 | 4:45 | 21:30 | 5:07 | 21:17 | 5:55 | 20:25 | 6:45 | 19:15 | 7:36 | 18:06 | 8:32 | 17:11 | 9:11 | 16:55 |
| 19 | 9:04 | 17:31 | 8:14 | 18:27 | 7:12 | 19:18 | 6:01 | 20:11 | 5:07 | 21:00 | 4:45 | 21:31 | 5:09 | 21:16 | 5:56 | 20:23 | 6:47 | 19:13 | 7:38 | 18:04 | 8:34 | 17:10 | 9:12 | 16:55 |
| 20 | 9:03 | 17:32 | 8:12 | 18:29 | 7:10 | 19:20 | 5:59 | 20:13 | 5:05 | 21:02 | 4:45 | 21:31 | 5:10 | 21:15 | 5:58 | 20:21 | 6:49 | 19:10 | 7:40 | 18:02 | 8:35 | 17:09 | 9:12 | 16:56 |
| 21 | 9:02 | 17:34 | 8:10 | 18:31 | 7:07 | 19:21 | 5:57 | 20:15 | 5:04 | 21:03 | 4:46 | 21:31 | 5:11 | 21:14 | 6:00 | 20:19 | 6:50 | 19:08 | 7:42 | 18:00 | 8:37 | 17:07 | 9:13 | 16:56 |
| 22 | 9:01 | 17:36 | 8:08 | 18:33 | 7:05 | 19:23 | 5:55 | 20:16 | 5:03 | 21:05 | 4:46 | 21:31 | 5:13 | 21:12 | 6:01 | 20:17 | 6:52 | 19:06 | 7:43 | 17:58 | 8:39 | 17:06 | 9:13 | 16:57 |
| 23 | 9:00 | 17:37 | 8:06 | 18:35 | 7:03 | 19:25 | 5:53 | 20:18 | 5:01 | 21:06 | 4:46 | 21:31 | 5:14 | 21:11 | 6:03 | 20:14 | 6:54 | 19:03 | 7:45 | 17:56 | 8:40 | 17:05 | 9:14 | 16:57 |
| 24 | 8:59 | 17:39 | 8:04 | 18:37 | 7:00 | 19:26 | 5:51 | 20:20 | 5:00 | 21:07 | 4:46 | 21:31 | 5:16 | 21:10 | 6:04 | 20:12 | 6:55 | 19:01 | 7:47 | 17:54 | 8:42 | 17:04 | 9:14 | 16:58 |
| 25 | 8:57 | 17:41 | 8:01 | 18:39 | 6:58 | 19:28 | 5:49 | 20:21 | 4:59 | 21:09 | 4:47 | 21:31 | 5:17 | 21:08 | 6:06 | 20:10 | 6:57 | 18:59 | 7:49 | 17:52 | 8:43 | 17:03 | 9:15 | 16:59 |
| 26 | 8:56 | 17:43 | 7:59 | 18:40 | 6:56 | 19:30 | 5:47 | 20:23 | 4:58 | 21:10 | 4:47 | 21:31 | 5:18 | 21:07 | 6:08 | 20:08 | 6:59 | 18:56 | 7:51 | 17:50 | 8:45 | 17:02 | 9:15 | 16:59 |
| 27 | 8:55 | 17:45 | 7:57 | 18:42 | 6:53 | 19:32 | 5:45 | 20:25 | 4:57 | 21:11 | 4:48 | 21:31 | 5:20 | 21:05 | 6:09 | 20:06 | 7:00 | 18:54 | 7:52 | 17:48 | 8:47 | 17:01 | 9:15 | 17:00 |
| 28 | 8:53 | 17:46 | 7:55 | 18:44 | 6:51 | 19:33 | 5:43 | 20:27 | 4:56 | 21:13 | 4:48 | 21:31 | 5:21 | 21:04 | 6:11 | 20:03 | 7:02 | 18:51 | 7:54 | 17:46 | 8:48 | 17:01 | 9:15 | 17:01 |
| 29 | 8:52 | 17:48 |  |  | 6:49 | 19:35 | 5:41 | 20:28 | 4:55 | 21:14 | 4:49 | 21:31 | 5:23 | 21:02 | 6:13 | 20:01 | 7:04 | 18:49 | 7:56 | 17:44 | 8:50 | 17:00 | 9:15 | 17:02 |
| 30 | 8:50 | 17:50 |  |  | 6:46 | 19:37 | 5:39 | 20:30 | 4:54 | 21:15 | 4:49 | 21:31 | 5:24 | 21:01 | 6:14 | 19:59 | 7:05 | 18:47 | 7:58 | 17:42 | 8:51 | 16:59 | 9:15 | 17:03 |
| 31 | 8:49 | 17:52 |  |  | 6:44 | 19:39 |  |  | 4:53 | 21:16 |  |  | 5:26 | 20:59 | 6:16 | 19:57 |  |  | 8:00 | 17:40 |  |  | 9:15 | 17:04 |

${ }^{1}$ Sunrise/set = corresponds to the upper limb of the sun appearing at the horizon
${ }^{2}$ National Research Council, Canada, Hertzberg Institute of Astrophysics

| $\begin{aligned} & \hline 2004 \\ & \hline \text { Date } \end{aligned}$ | JANUARY |  | FEBRUARY |  | MARCH |  | APRIL |  | MAY |  | JUNE |  | JULY |  | AUGUST |  | SEPTEMBER |  | October |  | NOVEMBER |  | DECEMBER |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rise | Set |
| 1 | 9:15 | 17:05 | 8:47 | 17:53 | 7:51 | 18:47 | 6:40 | 19:42 | 5:35 | 20:33 | 4:51 | 21:18 | 4:51 | 21:30 | 5:29 | 20:56 | 6:19 | 19:53 | 7:08 | 18:43 | 8:03 | 17:37 | 8:54 | 16:58 |
| 2 | 9:15 | 17:06 | 8:46 | 17:55 | 7:49 | 18:49 | 6:38 | 19:43 | 5:33 | 20:35 | 4:51 | 21:19 | 4:51 | 21:30 | 5:30 | 20:54 | 6:20 | 19:50 | 7:10 | 18:40 | 8:05 | 17:35 | 8:55 | 16:57 |
| 3 | 9:15 | 17:07 | 8:44 | 17:57 | 7:47 | 18:51 | 6:35 | 19:45 | 5:32 | 20:36 | 4:50 | 21:20 | 4:52 | 21:29 | 5:32 | 20:53 | 6:22 | 19:48 | 7:12 | 18:38 | 8:06 | 17:33 | 8:56 | 16:57 |
| 4 | 9:15 | 17:08 | 8:43 | 17:59 | 7:45 | 18:53 | 6:33 | 19:47 | 5:30 | 20:38 | 4:49 | 21:21 | 4:53 | 21:29 | 5:33 | 20:51 | 6:24 | 19:46 | 7:13 | 18:36 | 8:08 | 17:31 | 8:58 | 16:56 |
| 5 | 9:15 | 17:09 | 8:41 | 18:01 | 7:42 | 18:54 | 6:31 | 19:48 | 5:28 | 20:40 | 4:49 | 21:22 | 4:54 | 21:28 | 5:35 | 20:49 | 6:25 | 19:44 | 7:15 | 18:34 | 8:10 | 17:30 | 8:59 | 16:56 |
| 6 | 9:14 | 17:11 | 8:39 | 18:03 | 7:40 | 18:56 | 6:28 | 19:50 | 5:26 | 20:41 | 4:48 | 21:23 | 4:55 | 21:28 | 5:36 | 20:47 | 6:27 | 19:41 | 7:17 | 18:31 | 8:12 | 17:28 | 9:00 | 16:55 |
| 7 | 9:14 | 17:12 | 8:37 | 18:05 | 7:38 | 18:58 | 6:26 | 19:52 | 5:24 | 20:43 | 4:48 | 21:24 | 4:56 | 21:27 | 5:38 | 20:45 | 6:29 | 19:39 | 7:18 | 18:29 | 8:14 | 17:26 | 9:01 | 16:55 |
| 8 | 9:13 | 17:13 | 8:36 | 18:06 | 7:35 | 19:00 | 6:24 | 19:54 | 5:23 | 20:44 | 4:47 | 21:25 | 4:57 | 21:26 | 5:40 | 20:43 | 6:30 | 19:37 | 7:20 | 18:27 | 8:15 | 17:25 | 9:03 | 16:55 |
| 9 | 9:13 | 17:15 | 8:34 | 18:08 | 7:33 | 19:02 | 6:22 | 19:55 | 5:21 | 20:46 | 4:47 | 21:26 | 4:58 | 21:25 | 5:41 | 20:42 | 6:32 | 19:34 | 7:22 | 18:24 | 8:17 | 17:23 | 9:04 | 16:55 |
| 10 | 9:12 | 17:16 | 8:32 | 18:10 | 7:31 | 19:03 | 6:19 | 19:57 | 5:19 | 20:48 | 4:46 | 21:26 | 4:59 | 21:25 | 5:43 | 20:40 | 6:34 | 19:32 | 7:24 | 18:22 | 8:19 | 17:21 | 9:05 | 16:54 |
| 11 | 9:12 | 17:17 | 8:30 | 18:12 | 7:29 | 19:05 | 6:17 | 19:59 | 5:18 | 20:49 | 4:46 | 21:27 | 5:00 | 21:24 | 5:44 | 20:38 | 6:35 | 19:30 | 7:25 | 18:20 | 8:21 | 17:20 | 9:06 | 16:54 |
| 12 | 9:11 | 17:19 | 8:28 | 18:14 | 7:26 | 19:07 | 6:15 | 20:00 | 5:16 | 20:51 | 4:46 | 21:28 | 5:01 | 21:23 | 5:46 | 20:36 | 6:37 | 19:27 | 7:27 | 18:18 | 8:23 | 17:18 | 9:07 | 16:54 |
| 13 | 9:10 | 17:20 | 8:26 | 18:16 | 7:24 | 19:09 | 6:13 | 20:02 | 5:14 | 20:52 | 4:45 | 21:28 | 5:02 | 21:22 | 5:48 | 20:34 | 6:38 | 19:25 | 7:29 | 18:16 | 8:24 | 17:17 | 9:08 | 16:54 |
| 14 | 9:09 | 17:22 | 8:25 | 18:18 | 7:22 | 19:10 | 6:11 | 20:04 | 5:13 | 20:54 | 4:45 | 21:29 | 5:03 | 21:21 | 5:49 | 20:32 | 6:40 | 19:23 | 7:31 | 18:13 | 8:26 | 17:16 | 9:09 | 16:54 |
| 15 | 9:09 | 17:24 | 8:23 | 18:20 | 7:19 | 19:12 | 6:08 | 20:06 | 5:11 | 20:56 | 4:45 | 21:29 | 5:04 | 21:20 | 5:51 | 20:30 | 6:42 | 19:20 | 7:32 | 18:11 | 8:28 | 17:14 | 9:09 | 16:55 |
| 16 | 9:08 | 17:25 | 8:21 | 18:21 | 7:17 | 19:14 | 6:06 | 20:07 | 5:10 | 20:57 | 4:45 | 21:30 | 5:06 | 21:19 | 5:53 | 20:28 | 6:43 | 19:18 | 7:34 | 18:09 | 8:30 | 17:13 | 9:10 | 16:55 |
| 17 | 9:07 | 17:27 | 8:19 | 18:23 | 7:15 | 19:16 | 6:04 | 20:09 | 5:08 | 20:59 | 4:45 | 21:30 | 5:07 | 21:18 | 5:54 | 20:26 | 6:45 | 19:16 | 7:36 | 18:07 | 8:31 | 17:11 | 9:11 | 16:55 |
| 18 | 9:06 | 17:28 | 8:17 | 18:25 | 7:12 | 19:17 | 6:02 | 20:11 | 5:07 | 21:00 | 4:45 | 21:30 | 5:08 | 21:16 | 5:56 | 20:23 | 6:47 | 19:13 | 7:38 | 18:05 | 8:33 | 17:10 | 9:12 | 16:55 |
| 19 | 9:05 | 17:30 | 8:15 | 18:27 | 7:10 | 19:19 | 6:00 | 20:13 | 5:06 | 21:02 | 4:45 | 21:31 | 5:10 | 21:15 | 5:58 | 20:21 | 6:48 | 19:11 | 7:39 | 18:03 | 8:35 | 17:09 | 9:12 | 16:56 |
| 20 | 9:04 | 17:32 | 8:13 | 18:29 | 7:08 | 19:21 | 5:58 | 20:14 | 5:04 | 21:03 | 4:45 | 21:31 | 5:11 | 21:14 | 5:59 | 20:19 | 6:50 | 19:08 | 7:41 | 18:01 | 8:36 | 17:08 | 9:13 | 16:56 |
| 21 | 9:03 | 17:34 | 8:10 | 18:31 | 7:05 | 19:23 | 5:55 | 20:16 | 5:03 | 21:04 | 4:46 | 21:31 | 5:12 | 21:13 | 6:01 | 20:17 | 6:52 | 19:06 | 7:43 | 17:58 | 8:38 | 17:07 | 9:13 | 16:57 |
| 22 | 9:01 | 17:35 | 8:08 | 18:33 | 7:03 | 19:24 | 5:53 | 20:18 | 5:02 | 21:06 | 4:46 | 21:31 | 5:14 | 21:11 | 6:02 | 20:15 | 6:53 | 19:04 | 7:45 | 17:56 | 8:40 | 17:06 | 9:14 | 16:57 |
| 23 | 9:00 | 17:37 | 8:06 | 18:34 | 7:01 | 19:26 | 5:51 | 20:19 | 5:00 | 21:07 | 4:46 | 21:31 | 5:15 | 21:10 | 6:04 | 20:13 | 6:55 | 19:01 | 7:47 | 17:54 | 8:41 | 17:04 | 9:14 | 16:58 |
| 24 | 8:59 | 17:39 | 8:04 | 18:36 | 6:58 | 19:28 | 5:49 | 20:21 | 4:59 | 21:08 | 4:47 | 21:31 | 5:17 | 21:09 | 6:06 | 20:11 | 6:57 | 18:59 | 7:48 | 17:52 | 8:43 | 17:03 | 9:15 | 16:58 |
| 25 | 8:58 | 17:41 | 8:02 | 18:38 | 6:56 | 19:30 | 5:47 | 20:23 | 4:58 | 21:10 | 4:47 | 21:31 | 5:18 | 21:07 | 6:07 | 20:08 | 6:58 | 18:57 | 7:50 | 17:50 | 8:45 | 17:02 | 9:15 | 16:59 |
| 26 | 8:56 | 17:42 | 8:00 | 18:40 | 6:54 | 19:31 | 5:45 | 20:24 | 4:57 | 21:11 | 4:48 | 21:31 | 5:19 | 21:06 | 6:09 | 20:06 | 7:00 | 18:54 | 7:52 | 17:48 | 8:46 | 17:02 | 9:15 | 17:00 |
| 27 | 8:55 | 17:44 | 7:58 | 18:42 | 6:52 | 19:33 | 5:43 | 20:26 | 4:56 | 21:12 | 4:48 | 21:31 | 5:21 | 21:04 | 6:11 | 20:04 | 7:02 | 18:52 | 7:54 | 17:46 | 8:48 | 17:01 | 9:15 | 17:01 |
| 28 | 8:53 | 17:46 | 7:56 | 18:44 | 6:49 | 19:35 | 5:41 | 20:28 | 4:55 | 21:14 | 4:49 | 21:31 | 5:22 | 21:03 | 6:12 | 20:02 | 7:03 | 18:50 | 7:56 | 17:44 | 8:49 | 17:00 | 9:15 | 17:02 |
| 29 | 8:52 | 17:48 | 7:53 | 18:45 | 6:47 | 19:36 | 5:39 | 20:30 | 4:54 | 21:15 | 4:49 | 21:31 | 5:24 | 21:01 | 6:14 | 19:59 | 7:05 | 18:47 | 7:57 | 17:42 | 8:51 | 16:59 | 9:15 | 17:03 |
| 30 | 8:51 | 17:50 |  |  | 6:45 | 19:38 | 5:37 | 20:31 | 4:53 | 21:16 | 4:50 | 21:30 | 5:26 | 20:59 | 6:16 | 19:57 | 7:07 | 18:45 | 7:59 | 17:41 | 8:52 | 16:58 | 9:15 | 17:03 |
| 31 | 8:49 | 17:51 |  |  | 6:42 | 19:40 |  |  | 4:52 | 21:17 |  |  | 5:27 | 20:58 | 6:17 | 19:55 |  |  | 8:01 | 17:39 |  |  | 9:15 | 17:05 |

Monthly Global and Diffuse Solar Radiation, 2003

| MONTH | GLOBAL RADIATION ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) |  | CUMULATIVE GLOBAL RADIATION (MJ/m²) |  | DIFFUSE RADIATION ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) |  | CUMULATIVE DIFFUSE RADIATION (MJ/m²) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2003 | Normal | 2003 | Normal | 2003 | Normal | 2003 | Normal |
| January | 133.7 | 129.9 | 133.7 | 129.9 | 66.6 | 71.4 | 66.6 | 71.4 |
| February | 202.1 | 210.1 | 335.8 | 340.0 | 107.6 | 105.3 | 174.2 | 176.7 |
| March | 412.8 | 362.4 | 748.6 | 702.4 | 182.3 | 173.9 | 356.5 | 350.6 |
| April | 447.2 | 492.2 | 1195.8 | 1194.6 | 182.1 | 178.5 | 538.6 | 529.1 |
| May | 671.8 | 586.3 | 1867.6 | 1780.9 | 237.8 | 222.2 | 776.4 | 751.3 |
| June | 626.1 | 638.7 | 2493.7 | 2419.6 | 254.3 | 228.1 | 1030.7 | 979.4 |
| July | 679.7 | 633.5 | 3173.4 | 3053.1 | 210.4 | 216.5 | 1241.1 | 1195.9 |
| August | 548.4 | 529.0 | 3721.8 | 3582.1 | 182.8 | 185.6 | 1423.9 | 1381.5 |
| September | 358.8 | 351.8 | 4080.6 | 3933.9 | 150.1 | 127.6 | 1574.0 | 1509.1 |
| October | 257.2 | 239.1 | 4337.8 | 4173.0 | 90.1 | 92.6 | 1664.1 | 1601.7 |
| November | 150.6 | 123.7 | 4488.4 | 4296.7 | 63.1 | 73.6 | 1727.2 | 1675.3 |
| December | 96.8 | 95.2 | 4585.2 | 4391.9 | 43.3 | 54.3 | 1770.5 | 1729.6 |
| Total | 4585.2 | 4391.9 |  |  | 1770.5 | 1729.6 |  |  |

Normals $=1961-1990$


Daily Global and Diffuse Solar Radiation, 2003
( $\mathrm{MJ} / \mathrm{m}^{2}$ )

| DATE | JAN |  | FEB |  | MAR |  | APR |  | MAY |  | JUN |  | JULY |  | AUG |  | SEPT |  | OCT |  | NOV |  | DEC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | G | D | G | D | G | D | G | D | G | D | G | D | G | D | G | D | G | D | G | D | G | D | G | D |
| 1 | 5.6 | 1.7 | 2.8 | 2.8 | 15.0 | 2.4 | 9.7 | 9.5 | 18.1 | 8.4 | 21.7 | 9.4 | 28.4 | 3.9 | 23.9 | 5.9 | 8.5 | 6.4 | 13.1 | 2.5 | 3.1 | 2.8 | 4.4 | 1.2 |
| 2 | 4.7 | 2.2 | 3.6 | 3.6 | 7.8 | 7.3 | 9.6 | 9.0 | 21.3 | 8.7 | 9.8 | 7.9 | 24.6 | 9.2 | 21.8 | 7.2 | 18.6 | 3.5 | 10.5 | 5.7 | 8.2 | 1.5 | 4.2 | 1.2 |
| 3 | 2.1 | 1.8 | 4.4 | 3.8 | 12.4 | 4.6 | 7.7 | 7.2 | 24.9 | 3.9 | 23.7 | 7.3 | 22.2 | 8.7 | 8.2 | 7.1 | 19.9 | 2.3 | 12.6 | 1.7 | 5.3 | 4.5 | 2.9 | 1.7 |
| 4 | 4.9 | 1.2 | 4.1 | 4.1 | 14.9 | 3.2 | 13.7 | 12.3 | 19.9 | 8.7 | 17.7 | 10.4 | 15.8 | 11.7 | 12.3 | 7.3 | 17.1 | 5.5 | 12.6 | 1.9 | 4.2 | 4.0 | 3.8 | 1.0 |
| 5 | 1.8 | 1.8 | 5.1 | 3.8 | 8.3 | 7.5 | 7.4 | 7.4 | 17.5 | 11.3 | 21.5 | 8.5 | 9.6 | 7.0 | 23.0 | 6.8 | 15.2 | 6.1 | 12.5 | 1.7 | 5.4 | 4.0 | 1.3 | 1.3 |
| 6 | 3.4 | 2.2 | 6.1 | 2.6 | 15.0 | 4.1 | 8.0 | 7.5 | 17.4 | 10.6 | 9.8 | 8.6 | 6.7 | 6.1 | 17.2 | 9.4 | 16.8 | 4.4 | 12.2 | 1.7 | 4.7 | 3.7 | 3.0 | 1.3 |
| 7 | 4.0 | 2.2 | 4.1 | 3.5 | 15.8 | 3.0 | 17.6 | 8.2 | 11.4 | 8.4 | 13.2 | 11.1 | 19.4 | 10.9 | 12.4 | 5.6 | 11.3 | 8.2 | 11.7 | 1.9 | 6.5 | 2.4 | 2.0 | 1.2 |
| 8 | 4.2 | 1.1 | 8.3 | 1.6 | 15.6 | 2.8 | 19.9 | 4.7 | 21.7 | 7.5 | 19.7 | 11.5 | 24.1 | 9.5 | 20.6 | 7.9 | 9.1 | 6.4 | 9.8 | 3.8 | 8.6 | 1.4 | 3.8 | 1.1 |
| 9 | 4.4 | 1.2 | 7.9 | 1.7 | 14.3 | 3.6 | 18.0 | 3.8 | 16.3 | 8.1 | 9.0 | 8.3 | 19.4 | 10.0 | 22.2 | 6.0 | 2.2 | 2.2 | 11.6 | 1.8 | 8.0 | 1.5 | 3.0 | 1.7 |
| 10 | 5.5 | 1.1 | 5.0 | 4.4 | 11.0 | 8.6 | 20.3 | 4.2 | 25.9 | 5.2 | 20.7 | 12.7 | 24.7 | 6.2 | 22.7 | 4.5 | 9.6 | 3.3 | 10.8 | 2.0 | 6.0 | 2.6 | 1.6 | 1.6 |
| 11 | 5.0 | 1.4 | 8.8 | 1.5 | 13.0 | 6.9 | 13.9 | 9.2 | 26.7 | 3.9 | 10.9 | 9.2 | 27.2 | 5.4 | 21.2 | 5.4 | 12.7 | 6.1 | 8.3 | 3.9 | 4.6 | 2.4 | 3.1 | 1.2 |
| 12 | 4.7 | 1.9 | 3.9 | 3.8 | 13.5 | 5.3 | 18.8 | 5.6 | 26.8 | 3.9 | 24.0 | 8.5 | 27.4 | 4.8 | 17.5 | 7.6 | 13.6 | 4.6 | 8.9 | 4.1 | 6.2 | 2.3 | 4.2 | 1.2 |
| 13 | 2.9 | 2.9 | 3.7 | 3.7 | 13.7 | 5.4 | 4.2 | 4.2 | 17.2 | 10.5 | 28.5 | 4.7 | 22.3 | 7.1 | 22.0 | 5.3 | 10.9 | 5.7 | 10.1 | 2.1 | 5.3 | 1.5 | 3.0 | 1.7 |
| 14 | 5.9 | 1.3 | 8.6 | 1.9 | 11.7 | 7.7 | 4.3 | 4.1 | 25.9 | 6.0 | 23.9 | 7.4 | 19.3 | 8.6 | 23.1 | 2.6 | 11.2 | 7.6 | 7.7 | 3.4 | 5.5 | 1.2 | 2.6 | 2.1 |
| 15 | 5.8 | 1.4 | 3.5 | 3.5 | 15.0 | 2.7 | 3.4 | 3.4 | 21.5 | 9.8 | 27.5 | 7.0 | 25.9 | 2.0 | 22.8 | 2.6 | 6.8 | 5.5 | 3.3 | 3.0 | 5.9 | 2.1 | 1.2 | 1.2 |
| 16 | 4.3 | 1.8 | 5.3 | 5.2 | 10.9 | 8.4 | 7.6 | 6.8 | 16.5 | 9.3 | 25.9 | 6.3 | 21.4 | 6.3 | 19.1 | 6.9 | 7.8 | 6.4 | 9.3 | 3.4 | 4.7 | 1.5 | 2.1 | 1.7 |
| 17 | 3.7 | 1.6 | 4.5 | 4.4 | 13.1 | 7.4 | 13.7 | 7.1 | 18.8 | 6.6 | 30.4 | 2.9 | 27.5 | 2.9 | 7.7 | 6.2 | 8.2 | 7.1 | 9.0 | 2.1 | 4.7 | 1.3 | 3.7 | 0.9 |
| 18 | 5.4 | 2.5 | 7.9 | 4.2 | 12.2 | 8.2 | 22.5 | 2.7 | 18.3 | 10.7 | 29.5 | 4.0 | 28.4 | 2.8 | 21.5 | 4.4 | 11.4 | 6.4 | 9.2 | 2.8 | 1.4 | 1.3 | 3.5 | 1.2 |
| 19 | 3.3 | 3.2 | 5.4 | 5.3 | 12.9 | 5.0 | 20.9 | 3.7 | 27.8 | 3.6 | 27.0 | 6.5 | 16.2 | 10.6 | 20.7 | 5.4 | 15.5 | 4.4 | 8.4 | 3.8 | 0.4 | 0.4 | 2.9 | 1.6 |
| 20 | 4.4 | 3.5 | 6.7 | 6.3 | 14.3 | 3.4 | 19.9 | 4.6 | 23.2 | 7.9 | 18.8 | 9.8 | 25.9 | 5.6 | 13.0 | 5.5 | 15.1 | 3.5 | 6.6 | 3.6 | 4.6 | 2.0 | 3.1 | 2.2 |
| 21 | 4.3 | 2.8 | 11.3 | 3.8 | 13.9 | 4.1 | 18.2 | 8.4 | 23.5 | 6.6 | 11.2 | 8.9 | 15.2 | 9.1 | 21.1 | 4.0 | 12.5 | 4.6 | 8.8 | 2.3 | 6.5 | 1.3 | 3.7 | 1.0 |
| 22 | 5.8 | 1.4 | 11.9 | 4.2 | 14.9 | 3.1 | 22.5 | 3.5 | 22.7 | 10.3 | 16.4 | 11.7 | 26.7 | 3.8 | 16.7 | 8.1 | 11.5 | 6.5 | 7.3 | 3.8 | 5.0 | 2.0 | 4.0 | 0.9 |
| 23 | 3.3 | 2.9 | 12.6 | 3.1 | 8.8 | 8.0 | 19.7 | 6.1 | 21.0 | 8.7 | 13.8 | 11.0 | 25.2 | 8.4 | 15.3 | 7.1 | 11.2 | 4.1 | 7.2 | 2.6 | 6.4 | 1.9 | 4.3 | 0.9 |
| 24 | 4.4 | 3.0 | 12.5 | 3.4 | 12.0 | 14.9 | 17.0 | 7.9 | 26.8 | 4.8 | 23.4 | 10.2 | 25.1 | 6.4 | 11.6 | 7.0 | 9.4 | 6.6 | 3.2 | 3.2 | 3.9 | 2.5 | 2.5 | 1.7 |
| 25 | 5.9 | 1.8 | 12.1 | 5.1 | 18.8 | 10.0 | 18.1 | 5.9 | 27.7 | 2.8 | 19.8 | 9.7 | 9.8 | 8.2 | 20.7 | 6.3 | 13.3 | 2.7 | 6.1 | 3.2 | 5.3 | 1.2 | 2.2 | 1.9 |
| 26 | 2.4 | 2.4 | 10.2 | 3.5 | 13.9 | 5.8 | 8.2 | 5.9 | 15.9 | 9.9 | 23.1 | 8.3 | 26.0 | 4.0 | 18.9 | 7.4 | 8.1 | 5.2 | 3.3 | 3.0 | 3.8 | 2.4 | 4.8 | 1.1 |
| 27 | 2.7 | 2.6 | 11.9 | 5.9 | 9.8 | 7.4 | 8.4 | 7.6 | 23.6 | 8.8 | 23.9 | 6.6 | 24.9 | 5.6 | 7.8 | 7.0 | 10.8 | 5.7 | 5.7 | 2.9 | 4.0 | 2.2 | 1.6 | 1.6 |
| 28 | 4.8 | 3.1 | 9.9 | 6.9 | 18.7 | 3.1 | 24.8 | 3.3 | 24.7 | 7.6 | 25.0 | 6.7 | 19.4 | 8.9 | 7.5 | 4.3 | 11.6 | 5.5 | 6.6 | 2.7 | 2.8 | 2.7 | 2.4 | 1.9 |
| 29 | 7.0 | 2.3 |  |  | 17.6 | 3.3 | 24.9 | 3.4 | 23.3 | 7.7 | 28.7 | 2.8 | 23.7 | 6.7 | 17.4 | 5.1 | 14.3 | 1.8 | 2.2 | 2.1 | 5.5 | 1.5 | 2.0 | 1.7 |
| 30 | 4.0 | 3.2 |  |  | 8.1 | 7.2 | 24.3 | 4.9 | 21.2 | 8.5 | 27.6 | 7.4 | 24.7 | 4.7 | 18.2 | 4.4 | 14.6 | 1.8 | 3.4 | 3.4 | 4.1 | 1.0 | 4.6 | 1.0 |
| 31 | 3.1 | 3.1 |  |  | 15.9 | 7.9 |  |  | 24.3 | 9.1 |  |  | 22.6 | 5.3 | 20.3 | 2.5 |  |  | 5.2 | 4.0 |  |  | 5.3 | 1.3 |
| TOTAL | 133.7 | 66.6 | 202.1 | 107.6 | 412.8 | 182.3 | 447.2 | 182.1 | 671.8 | 237.8 | 626.1 | 245.3 | 679.7 | 210.4 | 548.4 | 182.8 | 358.8 | 150.1 | 257.2 | 90.1 | 150.6 | 63.1 | 96.8 | 43.3 |

COMMENTS: G=Global Radiation D= Diffuse Radiation

March 23, 24 Maladjustment of shade ring July 15, diffuse repaired


Diffuse Radiation Sensor, September 30, 2003. photo credit: Rita Johannsson

Monthly Average Soil Temperatures at 0900 hrs, 2003
(10 to 300 cm depths)

| MONTH | Average Air Temperature | $10 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right)$ |  | $20 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right)$ |  | $50 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right)$ |  | $100 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right)$ |  | $150 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right)$ |  | $300 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | @0900h | 2003 | Normal |
| January | -16.8 | -7.2 | -8.3 | -5.8 | -7.6 | -3.6 | -3.8 | -0.1 | -0.2 | 1.8 | 1.8 | 4.5 | 4.5 |
| February | -17.3 | -7.3 | -7.3 | -6.1 | -6.8 | -4.7 | -4.1 | -1.7 | -1.0 | 0.2 | 0.8 | 3.1 | 3.3 |
| March | -10.4 | -5.1 | -3.1 | -6.1 | -2.8 | -4.0 | -1.8 | -1.9 | -0.6 | -0.4 | 0.4 | 2.0 | 2.5 |
| April | 3.8 | 4.3 | 3.2 | 0.3 | 3.5 | 2.7 | 2.5 | 1.5 | 1.2 | 1.0 | 1.2 | 1.8 | 2.2 |
| May | 12.2 | 11.1 | 10.6 | 9.9 | 10.9 | 9.3 | 8.9 | 7.0 | 5.9 | 5.2 | 4.4 | 3.3 | 3.1 |
| June | 16.6 | 15.6 | 15.7 | 15.0 | 16.2 | 13.2 | 14.0 | 10.7 | 10.4 | 8.6 | 8.2 | 5.5 | 5.2 |
| July | 19.6 | 18.8 | 18.0 | 19.2 | 18.8 | 16.4 | 16.8 | 13.1 | 13.2 | 10.9 | 11.1 | 7.5 | 7.5 |
| August | 19.6 | 19.6 | 16.8 | 20.2 | 17.9 | 18.0 | 16.8 | 15.2 | 14.1 | 13.0 | 12.4 | 9.4 | 9.1 |
| September | 9.6 | 11.4 | 11.2 | 12.7 | 12.5 | 13.3 | 13.3 | 13.2 | 12.5 | 12.5 | 11.9 | 10.5 | 9.9 |
| October | 4.4 | 6.4 | 4.5 | 8.0 | 6.0 | 9.0 | 8.0 | 9.9 | 9.2 | 10.4 | 9.7 | 9.9 | 9.5 |
| November | -11.8 | -4.5 | -1.7 | -2.3 | -0.5 | 1.3 | 2.8 | 5.1 | 5.4 | 7.1 | 6.8 | 8.6 | 8.1 |
| December | -9.8 | -5.6 | -6.5 | -3.8 | -5.5 | -1.6 | -1.6 | 1.8 | 1.9 | 4.0 | 3.9 | 6.6 | 6.3 |

Normals $=1961-1990$


Monthly Average Soil Temperatures at 1600 hrs, 2003
(10 to 20 cm depths)

| MONTH | Average Monthly Air Temperature | $10 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right)$ |  | $20 \mathrm{~cm}\left({ }^{\circ} \mathrm{C}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | @ 1600h | 2003 | Normal | 2003 | Normal |
| January | -12.8 | -7.2 | -8.1 | -5.9 | -6.8 |
| February | -12.1 | -7.3 | -7.1 | -6.1 | -5.9 |
| March | -3.9 | -4.7 | -2.7 | -6.2 | -2.2 |
| April | 9.6 | 6.2 | 5.4 | 0.1 | 4.2 |
| May | 18.8 | 14.2 | 13.8 | 9.9 | 11.8 |
| June | 21.8 | 18.6 | 19.2 | 15.1 | 17.1 |
| July | 25.3 | 22.0 | 21.5 | 19.5 | 19.5 |
| August | 27.9 | 22.5 | 20.2 | 20.2 | 18.6 |
| September | 17.1 | 13.6 | 13.6 | 12.7 | 13.1 |
| October | 12.6 | 8.1 | 6.2 | 7.9 | 6.6 |
| November | -4.9 | -4.1 | -1.1 | -2.5 | 0.2 |
| December | -4.8 | -5.2 | -6.3 | -3.9 | -4.8 |

Normal $=1961$-1990


Monthly Average Wind Speed and Extreme Gusts, 2003

| MONTH | AVERAGE (km/h) |  | EXTREME GUST (km/h) |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | 2003 | Normal* $^{*}$ | Direction | 2003 | Date |
| January | 12.5 | 16.0 | WNW | 65.5 | 08 |
| February | 13.3 | 16.0 | N | 57.7 | 11 |
| March | 13.8 | 17.0 | W | 73.3 | 23 |
| April | 17.4 | 18.0 | WNW | 77.6 | 09 |
| May | 17.1 | 18.0 | WNW | 87.8 | 16 |
| June | 15.6 | 17.0 | WNW | 82.8 | 27 |
| July | 13.2 | 16.0 | W | 78.5 | 13 |
| August | 14.3 | 16.0 | WNW | 64.8 | 08 |
| September | 15.4 | 17.0 | SW\&WNW | 67.7 | $10 \& 23$ |
| October | 14.1 | 17.0 | WNW | 79.0 | 23 |
| November | 12.7 | 16.0 | NW | 50.1 | 05 |
| December | 12.2 | 16.0 | SSE | 54.1 | 05 |

*1961-90 Normals used are from the Environment Canada, Saskatoon Airport station




| Saskatchewan Research Council Annual Weather Summary <br> latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 36 \mathrm{~W}$ asl 497 m Saskatoon |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 2003 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | NORMAL (1971-2000) OR EXTREME (1892-2002) |
| 岗 | Average annual maximum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme annual maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average annual minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme annual minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Annual average ( ${ }^{\circ} \mathrm{C}$ ) <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | 9.3 38.9 August 16 -2.5 -33.9 March 07 3.4 179 | 8.5 37.2 June 28 -2.9 -32.2 Jan. 31 2.8 219 | 8.3 41.0 June 1988 -3.4 -50.0 Feb. 1893 2.5 197.1 |
|  | Annual growing ( $5^{\circ} \mathrm{C}$ base) <br> Annual frost-free growing ( $5^{\circ} \mathrm{C}$ base) <br> Annual heating ( $18^{\circ} \mathrm{C}$ base) <br> Annual cooling ( $18^{\circ} \mathrm{C}$ base) | $\begin{array}{r} 2019.5 \\ 1691.0 \\ 5527.2 \\ 257.4 \end{array}$ | $\begin{array}{r} 1699.9 \\ 1572.2 \\ 5760.9 \\ 227.9 \end{array}$ | $\begin{array}{r} 1672.9 \\ 1691.0 \\ 5808.8 \\ 119.1 \end{array}$ |
|  | Annual total (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 257.7 \\ \text { 28.4/July } 06 \\ 110 \end{array}$ | $\begin{array}{r} 320.0 \\ 32.2 \text { July } 09 \\ 107 \end{array}$ | 99.4 June 24,348.2 <br> 1158.7 |
| $\frac{2}{2}$ | Average monthly speed (km/h) <br> Peak gust (direction/speed/date) | $\begin{array}{r} 14.9 \\ 87.8^{\text {wnw }} \text { May } 16 \end{array}$ | $\begin{array}{r} 14.5 \\ 78.2^{\mathrm{w}} \text { May } 29 \end{array}$ | $151.0 \text { wAug 14, 19.6** }$ |
| 2 | Total annual bright sunshine (hours) <br> \% possible bright sunshine <br> \% normal bright sunshine <br> Bright Sunshine days <br> Total annual global radiation $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$ <br> Total annual diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ | 2389.8 <br> 53.3 <br> 104.2 <br> 322 <br> 4585.2 <br> 1770.5 | 2313.6 <br> 51.6 <br> 319 <br> 4857.0 <br> 1705.9 | $\begin{array}{r} 2294.1 \\ 51.2 \\ \\ 319.8 \\ 4391.9^{* *} \\ 1729.6^{* *} \end{array}$ |
|  | Your Information <br> 2003 <br> July 16 - Diffuse repaired ( $1 / 2$ hour of loss dat Oct 22-23. Stevenson screen repaired RM Young Anenommeter lower inspection. ( $11 / 2 \mathrm{hrs}$ at noon los Grass temperature calibrated Soil temperatures checked and | for routine data) <br> evaluated | and Extreme V 1971-2000 norm ted from original sheets and chec <br> e, missing data <br> he University of <br> ( 2.5 km E of of Canada Airp Wind normals ma station. Global by '**' are from e values are from s extending back 882 to 1901 have | for CRS have been entered on computerized for correctness. Where been replaced with data atchewan, Kernen Farm and the Meteorological station (10 km WNW of with '*' are from the MSC Diffuse radiation normals 1990 period. <br> Saskatoon area weather 882. The earlier records ral large gaps. |
|  | 14 SaskPower $\square$ Agriculture, Food and Rural Revitalization | Agriculture and Agri-Food Canada |  |  |


| Saskatchewan Research Council Monthly Weather Summary |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | January 2003 | $\begin{gathered} 2003 \\ \text { VALUE } \end{gathered}$ | $2002$ <br> VALUE | NORMAL OR EXTREME FOR CRS <br> 1971-2000 (1961-90) | $\begin{aligned} & \text { EXTREME FOR } \\ & \text { SASKATOON } \\ & \text { STATIONS } \end{aligned}$ |
| ¢ | Average monthly maximum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | -10.3 $5.4 / 08$ -20.3 $-31.6 / 26$ -15.3 31 | $\begin{array}{r} \hline-9.2 \\ 6.8 / 08 \\ -17.6 \\ -32.2 / 31 \\ -13.4 \\ 30 \end{array}$ | $-11.6(-12.4)$ $7.0 / 1986 / 11$ $-21.8(-22.6)$ $-43.0 / 1966 / 22 \& 1969 / 29$ $-16.7(-17.4)$ $31(31)$ | $\begin{aligned} & \text { 10.0/1931/30 } \\ & -48.9 / 1893 / 31 \end{aligned}$ |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 0.0 \\ 0.0 \\ 1033.1 \\ 1033.1 \\ 0.0 \\ 0.0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0.0 \\ 973.3 \\ 973.3 \\ 0.0 \\ 0.0 \end{array}$ | $\begin{array}{r} 0.0(0.0) \\ 0.0(0.0) \\ 1076.9(1114.8) \\ 1076.9(1114.8) \\ 0.0(0.0) \\ 0.0(0.0) \end{array}$ |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 7.2 \\ 7.2 \\ 2.1 / 26 \\ 10 \end{array}$ | $\begin{array}{r} 2.9 \\ 2.9 \\ 1.1 / 02 \\ 6 \end{array}$ | $\begin{array}{r} 18.2(20.5) \\ 18.2(20.5) \\ 15.4 / 1989 / 30 \\ 11(11) \end{array}$ | 30.5/1893/23 |
| $\begin{array}{\|l} 20 \\ 2 \\ 3 \end{array}$ | Average monthly speed (km/h) Peak gust (speed/direction/date) | $\begin{array}{r} 12.5 \\ 65.5 \text { wnw } 08 \end{array}$ | $\begin{array}{r} 12.2 \\ 42.0^{\mathrm{NW}} 13 \end{array}$ |  | $\begin{array}{r} 16.0 \\ 111.0^{\mathrm{w}} 1986 / 11 \end{array}$ |
| z | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> \% normal bright sunshine <br> Bright Sunshine days <br> Monthly global radiation(MJ/m²) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 124.9 \\ 48.2 \\ 120.9 \\ 26 \\ 133.7 \\ 66.6 \\ \hline \end{array}$ | $\begin{array}{r} 107.5 \\ 41.5 \\ 21 \\ 113.7 \\ 61.7 \end{array}$ | $\begin{array}{r} 103.3(104.6) \\ 39.9(40.4) \\ \\ 23.8(24) \\ (129.9) \\ (71.4) \end{array}$ |  |
| - | Average grass level <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} -10.2 \\ -7.2 /-5.8 \\ -3.6 /-0.1 \\ 1.8 / 4.5 \\ \hline \end{array}$ | $\begin{array}{r} -7.6 /-5.3 \\ -2.8 / 0.8 \\ 2.7 / 5.4 \end{array}$ | $\begin{array}{r} (-8.3 /-7.6) \\ (-3.8 /-0.2) \\ (1.8 / 4.5) \\ \hline \end{array}$ |  |
|  | or Your Information <br> Surprisingly, overall January 2003 was above the no of $-31.6^{\circ} \mathrm{C}$, the temperature mean was $1.4^{\circ} \mathrm{C}$ above th ecrease in the monthly value. The precipitation, $39.6 \%$ oil temperatures ranged between normal and $1.8^{\circ} \mathrm{C}$ as yet to be recorded at either the 150 cm or the 300 increase of 21.6 hours. The wind only reached above leasant. <br> How does one define pleasant? Environment Canada h ell-being. A score of 50 points and above is deemed a points), Psychological state (20 points), Hazardou Discomfort, is the biggest contributor with 35 points. ncomfortable are Cree Lake, (51), Brochet, (57), Chu ot make it but Regina (49) comes very close. The best | mal mean temp normal mean of normal, fell bove normal. F m level. The sta kph on three d <br> s devised the cl an uncomfortab ness (20 points) sing this index, chill (82), Gimli place is Medicin | ture. Ranging ue. Heating de snow and unfo t was recorde n recorded two s with a daily <br> ate severity in place to live w and Outdoor m only places ), The Pas (52) Hat (29). | from an extreme maximum of $5.4^{\circ}$ gree-days reflected the warmer te tunately, rain, creating very slippery during the last half of the month days more bright sunshine than $n$ average of 12.5 kph . Overall, for a <br> dex to rate a locale's climate in term eather-wise. The scoring is based on obility (10 points). Winter Discomfor in the prairie provinces with an airp ), Thompson (53) and Winnipeg (5 | an extreme minimum peratures with a slight streets and sidewalks. the 100 cm level but mal translating into an January, the month was <br> of human comfort and four areas: Discomfort <br> t, a sub-component of th that are considered Saskatoon (42) does Phillips, 1998 |
|  | 14 SaskPower <br> Saskatchewan Agriculture, and Rural Revitalization | Agriculture Agri-Food $\qquad$ | Agricultu Agroalim $\qquad$ | $\qquad$ | Kipp \& Zonen |


| Saskatchewan Research Council Monthly Weather Summary |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | February 2003 | $\begin{gathered} 2003 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | NORMAL OR EXTREME FOR CRS <br> 1971-2000 (1961-90) | EXTREME FOR SASKATOON STATIONS |
|  | Average monthly maximum ( ${ }^{\circ} \mathrm{C}$ ) <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} \hline-10.1 \\ -1.5 / 07 \\ -20.2 \\ -33.5 / 24 \\ -15.2 \\ 28 \end{array}$ | $\begin{array}{r} \hline-2.1 \\ 7.9 / 17 \\ -12.2 \\ -27.4 / 28 \\ -7.2 \\ 28 \end{array}$ | $\begin{array}{r} \hline-7.7(-8.6) \\ 7.5 / 1988 / 26 \& 1991 / 06 \\ -17.6(-18.3) \\ -41.1 / 1972 / 06 \\ -12.6(-13.7) \\ 28(28) \end{array}$ | $\begin{gathered} 12.8 / 1931 / 19 \\ -50.0 / 1893 / 01 \end{gathered}$ |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 0.0 \\ 0.0 \\ 928.7 \\ 1961.8 \\ 0.0 \\ 0.0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0.0 \\ 705.1 \\ 1678.4 \\ 0.0 \\ 0.0 \end{array}$ | $\begin{array}{r} 0.0(0.0) \\ 0.0(0.0) \\ 866.3(909.9) \\ 1963.2(2024.7) \\ 0.0(0.0) \\ 0.0(0.0) \end{array}$ |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 8.1 \\ 15.3 \\ 4.1 / 17 \\ 12 \end{array}$ | $\begin{array}{r} 3.3 \\ 6.2 \\ 2.8 / 19 \\ 3 \end{array}$ | $\begin{array}{r} 13.3(14.6) \\ 31.5(35.1) \\ 14.2 / 1979 / 13 \\ 10(10) \end{array}$ | 30.0/1962/03 |
| $\frac{2}{2}$ | Average monthly speed (km/h) Peak gust (speed/direction/date) | $\begin{array}{r} 13.3 \\ 57.7^{\mathrm{N} 11} \end{array}$ | $\begin{array}{r} 14.1 \\ 66.3^{\mathrm{Nw} 11} \end{array}$ |  | $\begin{array}{r} 16.0 \\ 106.0^{\mathrm{N} 1988 / 22} \end{array}$ |
|  | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> \% normal bright sunshine <br> Bright Sunshine days <br> Monthly global radiation $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$ <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 110.0 \\ 39.5 \\ 83.1 \\ 19 \\ 202.1 \\ 107.6 \end{array}$ | 157.4 <br> 56.4 <br> 26 200.1 <br> 90.6 | $\begin{array}{r} 132.3(134.1) \\ 47.4(48.2) \\ 24.2(25) \\ (210.1) \\ (105.3) \\ \hline \end{array}$ |  |
| - | Average grass level <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} -7.5 \\ -7.3 /-6.1 \\ -4.7 /-1.7 \\ 0.2 / 3.1 \\ \hline \end{array}$ | $\begin{array}{r} -6.2 /-4.3 \\ -3.4 /-0.8 \\ 0.9 / 3.9 \end{array}$ | $\begin{array}{r} (-7.3 /-6.8) \\ (-4.1 /-1.0) \\ (0.8 / 3.3) \end{array}$ |  |
|  | or Your Information <br> ebruary was dull, dry and dispiriting cold. The latter low $-30^{\circ} \mathrm{C}$ for the next four days, rose to $-28^{\circ} \mathrm{C}$ You know it has been cold when people comment mperatures, it was fortunate wind speed values we he ground. February lacked 5 days of bright sunshi wering the monthly total 22.3 hours below norma mperatures slowly falling to $2.5^{\circ} \mathrm{C}$ by month's end <br> ow cold can it get? Ask the meteorologists who ma ficial coldest temperature was recorded. They had elow the last marking of $-80^{\circ} \mathrm{C}$. After calibration, a ellets before hitting the ground. ${ }^{\text {. }}$ | ortion of Febru the $25^{\text {th }}$ then ow nice and wan low for the $m$ as compared At 150 cm leve <br> ed the Snag w wait until May value of $-81.4^{\circ}$ | $y$ was the cold covered to near $m$ it is' and th th. Precipitatio normal. Twe soil temperatu <br> ather station in or the official t was accepted | dest. On the $20^{\text {th }}$, temperatures slip ear seasonable values for the re e temperature is hovering aroun on was $61 \%$ of normal with 19 cm ve days recorded less than one ures remained steady around $0^{\circ} \mathrm{C}$ <br> the Yukon on February $3^{\text {rd }}, 1947$ emperature as the alcohol in the Water tossed into the air froze | ed to $-28^{\circ} \mathrm{C}$, lingered ainder of the month. $-20^{\circ} \mathrm{C}$. With the cold of snow measured on ur of bright sunshine with the 300 cm level <br> when North America's ermometer had fallen to wheat-kennel-size ¹Phillips, 1998. |
|  | 14 SaskPower $\square$ Saskatchewan and Rural Revitalization | Agriculture Agri-Food | Agricultu Agroalim | thire Canada | Kipp \& Zonen |


| Saskatchewan Research Council Monthly Weather Summary <br> latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 36 \mathrm{~W}$ asl 497 m Saskatoon |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | March 2003 | $\begin{gathered} 2003 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | RMAL OR EXTREME FOR CRS 1971-2000 (1961-90) | EXTREME FOR SASKATOON STATIONS |
|  | Average monthly maximum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} \hline-2.8 \\ 12.9 / 30 \\ -13.3 \\ -33.9 / 07 \\ -8.0 \\ 29 \end{array}$ | $\begin{array}{r} \hline-6.7 \\ 6.6 / 28 \\ -18.0 \\ -27.6 / 20 \\ -12.4 \\ 31 \end{array}$ | $\begin{array}{r} \hline-0.7(-2.1) \\ 17.0 / 1986 / 27 \\ -10.5(-12.1) \\ -38.9 / 1972 / 02 \\ -5.6(-7.0) \\ 30(30) \end{array}$ | $\begin{aligned} & 22.8 / 1910 / 23 \\ & -43.3 / 1897 / 14 \end{aligned}$ |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 1.6 \\ 1.6 \\ 807.0 \\ 2768.8 \\ 0.0 \\ 0.0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0.0 \\ 942.5 \\ 2620.9 \\ 0.0 \\ 0.0 \end{array}$ | $\begin{array}{r} 2.4(1.2) \\ 2.4(1.2) \\ 732.1(784.1) \\ 2695.3(2808.8) \\ 0.0(0.0) \\ 0.0(0.0) \end{array}$ |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 4.8 \\ 20.1 \\ 1.5 / 23 \\ 9 \end{array}$ | $\begin{array}{r} 8.1 \\ 14.3 \\ 1.2 / 29 \\ 13 \end{array}$ | $\begin{array}{r} 16.2(19.9) \\ 47.7(55.0) \\ 32.0 / 1967 / 30 \\ 9(9) \end{array}$ | 32.0/1967/30 |
| $\begin{array}{\|c} 20 \\ 2 \\ 3 \end{array}$ | Average monthly speed (km/h) Peak gust (speed/direction/date) | $\begin{array}{r} 13.8 \\ 73.3^{w} 23 \end{array}$ | $\begin{array}{r} 13.9 \\ 60.3^{\mathrm{NN}} 29 \end{array}$ |  | $\begin{array}{r} 17.0 \\ 93.0^{\mathrm{w}} 1959 / 18 \end{array}$ |
|  | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> \% normal bright sunshine <br> Bright Sunshine days <br> Monthly global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 209.0 \\ 56.7 \\ 119.3 \\ 29 \\ 412.8 \\ 182.3 \end{array}$ | 200.4 <br> 54.3 <br> 30 384.1 <br> 170.3 | $\begin{array}{r} 175.2(174.6) \\ 47.4(47.4) \\ \\ 27.1(27) \\ (362.4) \\ (173.9) \end{array}$ |  |
| 言 | Average grass level <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} -4.8 \\ -5.1 /-6.1 \\ -4.0 /-1.9 \\ -0.4 / 2.0 \end{array}$ | $\begin{array}{r} -8.4 /-5.8 \\ -4.6 /-1.4 \\ 0.3 / 2.8 \end{array}$ | $\begin{array}{r} (-3.1 /-2.8) \\ (-1.8 /-0.6) \\ (0.4 / 2.5) \\ \hline \end{array}$ |  |
|  | For Your Information <br> If March comes in like a lion, it arrived wearing long was marked by unseasonably low minimum tempe did not rise above $-10^{\circ} \mathrm{C}$ until the $13^{\text {th }}$. Although the chilling beginning. Precipitation, remaining below n graupel during a brief thunderstorm. Gale (63-75 k days recording less than one hour of bright sunshin eagle. The gophers were up out of their holes by at <br> For every disaster, there is an entrepreneur who Letellier hotelier advertised 'flood theme' rooms co instructions on the wall. Customers from as far awa Phillips, 2002. | underwear an atures dipping rest of the mon rmal for the m h) force winds . The geese a least the $19^{\text {th }}$. <br> ees an opportu plete with rubb as Switzerland | its teeth chat low $-30^{\circ} \mathrm{C}$ on experienced th and the ye re recorded ved back from <br> ty. A year aft boots by the ook advantage | instead of roaring. The fir occasions. Even the maxi inglike temperatures, they coul ell as snow, rain, pellets a Bright sunshine was above ir winter vacation around th <br> uthern Manitoba's "1997 $m$, dry bed, sandbags on ther the offer ${ }^{1}$. | e third of the month daily temperatures not offset the bone ven, on the $27^{\text {th }}$, as rmal with only three $5^{\text {th }}$ along with a bald <br> d of the Century," oor, and evacuation |
|  | 4 SaskPower Agriculture, Food and Rural Revitalizatio | Agriculture Agri-Food | Agricultu <br> Agroalim |  | Kipp \& Zonen |


| Saskatchewan Research Council Monthly Weather Summary <br> latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 36 \mathrm{~W}$ asl 497 m Saskatoon |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | April 2003 | $\begin{gathered} 2003 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | RMAL OR EXTREME FOR CRS 1971-2000 (1961-90) | EXTREME FOR SASKATOON STATIONS |
|  | Average monthly maximum ( ${ }^{\circ} \mathrm{C}$ ) <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} 10.8 \\ 23.7 / 22 \\ 0.6 \\ -10.9 / 04 \\ 5.7 \\ 12 \end{array}$ | $\begin{array}{r} \hline 6.4 \\ 19.3 / 13 \\ -6.3 \\ -19.1 / 03 \\ 0.1 \\ 27 \end{array}$ | $\begin{array}{r} 10.7(9.9) \\ 31.5 / 2001 / 28 \\ -1.7(-2.0) \\ -27.8 / 1979 / 01 \\ 4.5(4.0) \\ 21(20) \end{array}$ | $\begin{array}{r} 33.3 / 1952 / 28 \\ -28.3 / 1893 / 05 \& 1954 / 02 \end{array}$ |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 104.8 \\ 106.4 \\ 368.0 \\ 3136.8 \\ 0.0 \\ 0.0 \end{array}$ | $\begin{array}{r} 22.2 \\ 22.2 \\ 537.4 \\ 3136.8 \\ 0.0 \\ 0.0 \end{array}$ | $\begin{array}{r} 61.3(54.8) \\ 63.7(55.7) \\ 420.7(420.9) \\ \text { 3116.0. (3196.9) } \\ 0.3(0.2) \\ 0.3(0.2) \end{array}$ |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 43.6 \\ 63.7 \\ 14.7 / 26 \\ 17 \end{array}$ | $\begin{array}{r} 12.0 \\ 26.3 \\ 5.0 / 23 \\ 8 \end{array}$ | $\begin{array}{r} 23.6(20.3) \\ 71.3(75.3) \\ 24.6 / 1985 / 19 \\ 8(7) \end{array}$ | 30.2/1955/19 |
| $\frac{2}{3}$ | Average monthly speed (km/h) Peak gust (speed/direction/date) | $\begin{array}{r} 17.4 \\ 77.6^{w N w} 09 \end{array}$ | $\begin{array}{r} 15.9 \\ 74.0^{\text {wsw }} 15 \end{array}$ |  | $\begin{array}{r} 18.0 \\ 108.0^{\mathrm{w}} 1959 / 06 \end{array}$ |
|  | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> \% normal bright sunshine <br> Bright Sunshine days <br> Monthly global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | 180.5 <br> 43.2 <br> 80.2 <br> 19 <br> 447.2 <br> 182.1 | $\begin{array}{r} 223.2 \\ 53.3 \\ 28 \\ 500.1 \\ 207.9 \end{array}$ | $\begin{array}{r} 225.2(229.4) \\ 53.8(54.9) \\ \\ 27.3(27) \\ (492.2) \\ (178.5) \end{array}$ |  |
| \% | Average grass level <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} 8.7 \\ 4.3 / 0.3 \\ 2.7 / 1.5 \\ 1.0 / 1.8 \end{array}$ | $\begin{aligned} & 1.9 / 3.3 \\ & 1.0 / 0.6 \\ & 0.9 / 2.2 \\ & \hline \end{aligned}$ | $\begin{aligned} & (3.2 / 3.5) \\ & (2.5 / 1.2) \\ & (1.2 / 2.2) \end{aligned}$ |  |
|  | or Your Information <br> 'April showers bring forth May flowers' then this on 17 days (twice the normal) producing 43.6 m eflected in only 19 days of bright sunshine (8 verage temperatures were below freezing for he month. The above average minimum temper mperature. Winds were relatively low with 'Ne ccurring once. <br> y convention, winds are named from the directio <br> o. In the Middle Ages, the names of the winds w vante (E), siroco (SE), ostro (S), libeccio (SW) hese winds labelled as $T, G, L, S, O, L, P$, and $M$ Thoen, 2001. | May will be an m or 85\% mo days less than e first six day eratures were r Gale' (51-62 <br> they are com re known thro ponente (W) | xceptional m than norma rmal) for a to of April and he major co $\mathrm{m} / \mathrm{h}$ ) winds <br> g from. A'n ghout the Me d maestro ( | for blossoms. The station cipitation. The number of 180.5 hours ( 44.7 hours remained above freezing utor to the $1.2^{\circ} \mathrm{C}$ above ring twice and 'Strong Ga <br> wind blows from the north. ranean countries as tramo On maps of this era you | recorded precipitation precipitation days is ss than normal). The for the remainder of ormal mean monthly ( $76-87 \mathrm{~km} / \mathrm{h}$ ) winds <br> This was not always tana (N), greco (NE) can see the initials o |
|  | 11 SaskPower Saskatchewan Agriculture, Food and Rural Revitalizatio | Agriculture Agri-Food | Agricultu <br> Agroalim | $\qquad$ | Kipp \& Zonen |


| Saskatchewan Research Council Monthly Weather Summary |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | May 2003 | $\begin{gathered} 2003 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | RMAL OR EXTREME FOR CRS 1971-2000 (1961-90) | EXTREME FOR SASKATOON STATIONS |
|  | Average monthly maximum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No.of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} 20.2 \\ 28.5 / 25 \\ 5.7 \\ -2.0 / 11 \\ 13.0 \\ 4 \end{array}$ | $\begin{array}{r} \hline 17.7 \\ 29.0 / 28 \& 29 \\ 1.4 \\ -9.4 / 05 \\ 9.6 \\ 14 \end{array}$ | $18.6(18.5)$ $35.0 / 1988 / 30$ $4.7(4.5)$ $-10.0 / 1967 / 02$ $11.6(11.5)$ $6(7)$ | $\begin{aligned} & 37.2 / 1936 / 27 \\ & -12.8 / 1907 / 06 \end{aligned}$ |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 248.1 \\ 354.5 \\ 166.2 \\ 3303.0 \\ 10.2 \\ 10.2 \end{array}$ | $\begin{array}{r} 170.7 \\ 192.9 \\ 267.2 \\ 3425.5 \\ 5.9 \\ 5.9 \end{array}$ | $\begin{array}{r} 211.6(209.0) \\ 275.3(265.4) \\ 204.4(206.9) \\ 3320.4(3436.6) \\ 7.4(7.0) \\ 7.7(7.2) \end{array}$ |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 13.4 \\ 77.1 \\ 6.4 / 16 \\ 4 \end{array}$ | $\begin{array}{r} 0.2 \\ 26.5 \\ 0.2 / 01 \\ 1 \end{array}$ | $\begin{array}{r} 44.3(43.7) \\ 115.6(119.0) \\ 39.9 / 1985 / 04 \\ 9(10) \end{array}$ | 51.3/1909/30 |
| $\begin{array}{\|l} 20 \\ 2 \\ 3 \end{array}$ | Average monthly speed (km/h) Peak gust (speed/direction/date) | $\begin{array}{r} 17.1 \\ 87.8^{w n w} 16 \end{array}$ | $\begin{array}{r} 19.0 \\ 78.2^{w} 29 \end{array}$ |  | $\begin{array}{r} 18.0 \\ 132.0^{\text {sw }} 1965 / 17 \end{array}$ |
|  | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> \% normal bright sunshine <br> Bright Sunshine days <br> Monthly global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 289.0 \\ 59.3 \\ 108.2 \\ 31 \\ 671.8 \\ 237.8 \end{array}$ | $\begin{array}{r} 324.3 \\ 66.5 \\ 31 \\ 842.3 \\ 206.2 \end{array}$ | $\begin{array}{r} 267.1(285.7) \\ 54.8(58.7) \\ \\ 29.5(29) \\ (586.3) \\ (222.2) \end{array}$ |  |
| - | Average grass level <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} 20.8 \\ 11.1 / 9.9 \\ 9.3 / 7.0 \\ 5.2 / 3.3 \\ \hline \end{array}$ | $\begin{array}{r} 9.8 / 10.8 \\ 6.9 / 4.8 \\ 3.8 / 3.0 \end{array}$ | $\begin{array}{r} (10.6 / 10.9) \\ (8.9 / 5.9) \\ (4.4 / 3.1) \end{array}$ |  |
|  | or Your Information <br> May was a gardeners' month with average te rmal date. Growing degree-days were above ave the above average monthly total for bright su ccurred by the $7^{\text {th }}$ but the next rain and, as it prinklers to supply the needed water for emergin ere very strong with speeds ranging from 52 km <br> ith dry conditions and high winds, situations know eer and Calgary. Eighty-five km/h winds whipped hanged to whiteout conditions as a freak snow ping out fences ${ }^{1}$. | mperatures ab verage along shine. The on turned out, the plants. Durin h to $87.8 \mathrm{~km} / \mathrm{h}$. <br> own as black d topsoil off fa torm pounded | $1^{\circ} \mathrm{C}$ above th the below disappointm ast rain did g the last hal <br> lizzards can mers' fields ca the region wit | mal. The last frost occurre age heating degree-days. was the lack of precipitation occur until the $16^{\text {th }}$. Most he month, along with the <br> as was the case two ye g a 15 -car pile-up. Two hour inds snapping lamp posts, | $18^{\text {th }}$, right on the eryday contributed Three events had deners resorted to of rain, the winds <br> ago between Red later the blackout prooting trees and |
|  | 4 SaskPower Agriculture, Food and Rural Revitalization Revitalizatio | Agriculture Agri-Food $\qquad$ | Agricultur Agroalim | $\qquad$ |  <br> Zonen |



| Saskatchewan Research Council Monthly Weather Summary <br> smart science solutions <br> latitude $52^{\circ} 09^{\prime} \mathrm{N}$ Longitude $106^{\circ} 36 \mathrm{~W}$ asl 497 m Saskatoon |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | July 2003 | $\begin{gathered} 2003 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | NORMAL OR EXTREME FOR CRS 1971-2000 (1961-90) | EXTREME FOR SASKATOON STATIONS |
| 岗 | Average monthly maximum ( ${ }^{\circ} \mathrm{C}$ ) <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} \hline 26.7 \\ 35.2 / 17 \\ 12.9 \\ 8.6 / 03 \\ 19.8 \\ 0 \end{array}$ | $\begin{array}{r} \hline 27.8 \\ 37.0 / 14 \\ 14.0 \\ 6.8 / 03 \\ 20.9 \\ 0 \end{array}$ | $24.8(25.1)$ $39.3 / 2001 / 05$ $11.5(11.5)$ $1.7 / 1967 / 02 \& 1978 / 09$ $18.2(18.3)$ $1(0)$ | 40.0/1919/17\&1941/19\&1946/30 -0.6/1918/25- |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 459.5 \\ 1166.3 \\ 16.8 \\ 3386.9 \\ 73.3 \\ 112.9 \end{array}$ | $\begin{array}{r} 493.9 \\ 1078.5 \\ 19.0 \\ 3502.9 \\ 109.9 \\ 175.9 \end{array}$ | $\begin{array}{r} 408.4(414.8) \\ 1015.2(1007.5) \\ 35.3(32.0) \\ 3438.5(3552.6) \\ 40.7(43.9) \\ 70.7(72.3) \end{array}$ |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 58.8 \\ 167.3 \\ 28.4 / 06 \\ 8 \end{array}$ | $\begin{array}{r} 70.8 \\ 151.5 \\ 26.6 / 09 \\ 9 \end{array}$ | $\begin{array}{r} 58.0(55.7) \\ 233.1(238.3) \\ 45.5 / 1968 / 29 \\ 12(11) \end{array}$ | 79.2/1946/03 |
| $\begin{array}{\|l} 20 \\ 3 \\ 3 \end{array}$ | Average monthly speed (km/h) <br> Peak gust (speed/direction/date) | $\begin{array}{r} 13.2 \\ 78.5^{\mathrm{w}} 13 \end{array}$ | $\begin{array}{r} 16.0 \\ 75.6^{\text {wNw }} 05 \end{array}$ |  | $\begin{array}{r} 16.0 \\ 113.0=1955 / 05 \end{array}$ |
| z | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> \% normal bright sunshine <br> Bright Sunshine days <br> Monthly global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 321.0 \\ 63.9 \\ 105.0 \\ 30 \\ 679.7 \\ 210.4^{1} \end{array}$ | 314.1 <br> 62.6 $\begin{array}{r} 30 \\ 700.8 \\ 193.9 \end{array}$ | $\begin{array}{r} 305.7(329.1) \\ 60.9(65.8) \\ 30.3(30) \\ (633.5) \\ (216.5) \end{array}$ |  |
| \% | Average grass level <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} 24.4 \\ 18.8 / 19.2 \\ 16.4 / 13.1 \\ 10.9 / 7.5 \end{array}$ | $\begin{array}{r} 19.6 / 20.7 \\ 16.7 / 13.0 \\ 10.5 / 6.9 \end{array}$ | $\begin{array}{r} (18.0) /(18.8) \\ (16.8) /(13.2) \\ (11.1) /(7.5) \\ \hline \end{array}$ |  |
|  | or Your Information <br> Hot! describes July 2003. Of the 16 days which w $35.2^{\circ}$ :old $33.9^{\circ} / 1967 \& 2002$ ) and $23^{\text {rd }}\left(31.0^{\circ}\right.$ :old 3 minimum average $1.4^{\circ}$ above normal. The high te arvesting of canola and peas had begun with oth eating degree-days being less than half, were offs was near normal with $76 \%$ of the rain occurring ov et with $28.4 \mathrm{~mm} ; 4.2 \mathrm{~mm}$ more than the old record ightning has been the cause of some strange res trikes from hitting the spires. After 103 bell ringers ashionable women, during the 1770's, sported lig those seen nowadays on oil trucks. | re above $27^{\circ}$, $\left..6^{\circ} / 1978\right)$. The peratures are er crops rated et by the cost o a 32 hour per set in 2000. 'G onses. Up to were killed bet tning rods fro | even were ab monthly maxi eflected in the as advanced cooling. Cool d on the $5^{\text {th }}$ le' and 'Stron 86, church be een 1753 and their hats co y missing due to | ove $30^{\circ}$. New daily station rec num average was $1.9^{\circ}$ above above normal growing degre for this time of year. ${ }^{2}$ Any ene g degree-days were $80 \%$ abo nd $6^{\text {th }}$. The $6^{\text {th }}$ also saw a new Gale' winds occurred on the els were rung in France in an 1786, the French governmen mplete with a silver chain to trail maintenance. ${ }^{2}$ SAFRR, $2003{ }^{3}$ Canadian | ords were set on the $17^{\text {th }}$ normal with the monthly e-days. By month's end, rgy saving costs, due to ove normal. Precipitation daily precipitation record $2^{\text {nd }}$ and $13^{\text {th }}$. <br> effort to prevent lightning nt outlawed the practice. ail on the ground, similar Geographic 2000 * Phillips, 1996. |
|  | 4 SaskPower <br> Saskatchewan and Rural Revitalization | Agriculture Agri-Food $\qquad$ | Agricultur <br> a Agroalim | $\qquad$ | Kipp \& Zonen |


| Saskatchewan Research Council Monthly Weather Summary |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | August 2003 | $\begin{gathered} 2003 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | RMAL OR EXTREME FOR CRS <br> 1971-2000 (1961-90) | $\begin{aligned} & \text { EXTREME FOR } \\ & \text { SASKATOON } \\ & \text { STATIONS } \end{aligned}$ |
|  | Average monthly maximum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average $\left({ }^{\circ} \mathrm{C}\right)$ <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} \hline 28.9 \\ 38.9 / 16 \\ 14.3 \\ 7.1 / 26 \\ 21.6 \\ 0 \end{array}$ | 23.4 $32.8 / 24$ 11.2 $2.6 / 02804$ 17.3 0 | $\begin{array}{r} 24.6(24.3) \\ 39.7 / 1998 / 06 \\ 10.4(10.1) \\ -2.8 / 1976 / 28 \\ 17.5(17.2) \\ 1(0) \end{array}$ | 39.7/1998/06 <br> $-2.8 / 1976 / 28 \& 1901 / 23$ |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 516.0 \\ 1682.3 \\ 13.2 \\ 3400.1 \\ 126.2 \\ 239.1 \end{array}$ | $\begin{array}{r} 382.8 \\ 1461.3 \\ 65.8 \\ 3568.7 \\ 45.6 \\ 221.4 \end{array}$ | $\begin{array}{r} 387.8(379.6) \\ 1403.0(1387.1) \\ 57.7(62.4) \\ 3496.2(3615.0) \\ 42.5(39.0) \\ 113.2(111.3) \end{array}$ |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 36.0 \\ 203.3 \\ 22.4 / 08 \\ 8 \end{array}$ | $\begin{array}{r} 81.8 \\ 233.3 \\ 18.0 / 11 \\ 18 \end{array}$ | $\begin{array}{r} 36.2(35.3) \\ 269.3(273.6) \\ 33.8 / 1998 / 17 \\ 10(9) \end{array}$ | 84.3/1945/03 |
| $\frac{2}{2}$ | Average monthly speed (km/h) Peak gust (speed/direction/date) | $\begin{array}{r} 14.3 \\ 64.8^{\mathrm{wNw}} 08 \end{array}$ | $\begin{array}{r} 12.5 \\ 62.2=25 \end{array}$ |  | $\begin{array}{r} 16.0 \\ 151.0^{w} 1967 / 14 \end{array}$ |
|  | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> \% normal bright sunshine <br> Bright Sunshine days <br> Monthly global radiation $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$ <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | 274.2 <br> 60.5 <br> 97.6 <br> 29 <br> 548.4 <br> 182.8 | 221.9 <br> 49.0 <br> 30 <br> 514.8 <br> 187.4 | $\begin{array}{r} 280.8(295.2) \\ 62.0(65.2) \\ \\ 30.1(30) \\ (529.0) \\ (185.6) \\ \hline \end{array}$ |  |
| \% | Average grass level <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} 23.4 \\ 19.6 / 20.2 \\ 18.0 / 15.2 \\ 13.0 / 9.4 \\ \hline \end{array}$ | $\begin{array}{r} 15.0 / 16.3 \\ 14.5 / 12.9 \\ 11.6 / 8.8 \\ \hline \end{array}$ | $\begin{array}{r} (16.8) /(17.9) \\ (16.8) /(14.1) \\ (12.4) /(9.1) \\ \hline \end{array}$ |  |
|  | or Your Information <br> July was hot; but August was hotter. Six temperatu igher than the previous 1998 and 2001 record. The av minimum of $14.3^{\circ}$ surpassed the old 1991 record of 13. and $19^{\text {th }}\left(35.8^{\circ}\right)$. August experienced 15 days with temp with temperatures of at least $32^{\circ}$, occurred from the $13^{\text {ti }}$ with the extreme cooling degree-days (base $24^{\circ} \mathrm{C}$ ) the lement. August $8^{\text {th }}$ saw the 1995 daily precipitation rec <br> he continental wide heat wave of 1936 stands as one onsecutive days of unbearable temperatures. By Sep everal drownings, were indirectly attributed. At Kingst male students wearing exposed suspenders. Frying Phillips, 1993. | e records were rage monthly m $4^{\circ}$. Three daily ex ratures above 30 to the $16^{\text {th }}$. The most notable at rd of 21.8 mm r <br> f the worst on re mber, nationally , police chose ggs on sidewalk | d or set startin imum tempera me maximum , 8 above $32^{\circ}$ reme tempera times the norm aced by 22.4 m <br> rd. At its July p 80 deaths wer to enforce by was tried every | with a new average monthly of $28.9^{\circ}$ tied the 1998 record erature records were set on the above $35^{\circ}$. A heat wave, defi are reflected in the various d Temperature was not the only hich was almost two-thirds of <br> southern Saskatchewan and ectly attributed to the heat w prohibiting topless male bath re. ${ }^{1}$ | perature of $21.6^{\circ} ; 0.6^{\circ}$ e the average monthly $5^{\text {th }}\left(34.4^{\circ}\right), 16^{\text {th }}\left(38.9^{\circ}\right)$ as three days or more ee-days monthly totals cord breaking weather monthly total. <br> nitoba experienced 13 another 400, including suits but drew the line |
|  | 14 SaskPower <br> Saskatchewan Agriculture, Food and Rural Revitalization | Agriculture Agri-Food | Agricultu Agroalim | $\qquad$ | Kipp \& Zonen |


| Saskatchewan Research Council |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | September 2003 | 2003 <br> VALUE | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | NORMAL OR EXTREME FOR CRS <br> 1971-2000 (1961-90) | $\begin{array}{r} \text { EXTREM } \\ \text { SASKA } \\ \text { STATI } \end{array}$ |  |
|  | Average monthly maximum ( ${ }^{\circ} \mathrm{C}$ ) <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average $\left({ }^{\circ} \mathrm{C}\right)$ <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} \hline 18.2 \\ 33.6 / 04 \\ 6.1 \\ -4.3 / 30 \\ 12.2 \\ 2 \end{array}$ | $\begin{array}{r} \hline 18.4 \\ 31.3 / 16 \\ 6.2 \\ -7.1 / 27 \\ 12.4 \\ 5 \end{array}$ | $\begin{array}{r} 18.1(17.7) \\ 35.6 / 1978 / 04 \\ 4.9(4.8) \\ -7.8 / 1974 / 30 \\ 11.6(11.3) \\ 6(5) \end{array}$ | 35.6/ | /1978/04 <br> /1908/28 |
| ¢ | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date heating <br> Monthly cooling ( $18^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date cooling | $\begin{array}{r} 217.1 \\ 1899.4 \\ 192.7 \\ 3592.8 \\ 18.3 \\ 257.4 \end{array}$ | $\begin{array}{r} 227.0 \\ 1688.3 \\ 175.5 \\ 3744.2 \\ 6.4 \\ 227.9 \end{array}$ | $203.5(196.9)$ $1606.5(1584.2)$ $198.9(206.6)$ $3695.1(3821.2)$ $5.8(6.2)$ $119.0(117.5)$ |  |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 35.8 \\ 239.1 \\ 27.4 / 09 \\ 9 \end{array}$ | $\begin{array}{r} 58.2 \\ 291.5 \\ 32.4 / 30 \\ 9 \end{array}$ | $\begin{array}{r} 29.4(32.9) \\ 298.7(307.3) \\ 29.6 / 1980 / 03 \\ 8(9) \end{array}$ | 44.2 | /1931/12 |
| $\frac{2}{2}$ | Average monthly speed (km/h) <br> Peak gust (speed/direction/date) | $\begin{array}{r} 15.4 \\ \text { SE10\&www } 23 \end{array}$ | $\begin{array}{r} 15.1 \\ \text { Nw63.2/19 } \end{array}$ |  |  | $\begin{array}{r} 17.0 \\ / 1967 / 22 \end{array}$ |
|  | Monthly bright sunshine (hours) \% possible bright sunshine <br> \% normal bright sunshine Bright Sunshine days <br> Monthly global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | 182.7 <br> 48.1 <br> 98.2 <br> 29 <br> 358.8 <br> 150.1 | $\begin{array}{r} 206.0 \\ 54.3 \\ \\ 25 \\ 359.9 \\ 124.2 \end{array}$ | $\begin{array}{r} 186.0(188.0) \\ 49.1(49.6) \\ \\ 27.0(26) \\ (351.8) \\ (127.6) \\ \hline \end{array}$ |  |  |
| \| | Average grass level <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} 12.5 \\ 11.4 / 12.7 \\ 13.3 / 13.2 \\ 12.5 / 10.5 \end{array}$ | $\begin{array}{r} 11.2 / 12.7 \\ 12.8 / 12.4 \\ 11.7 / 9.6 \end{array}$ | $\begin{array}{r} (11.2) /(12.5) \\ (13.3) /(12.5) \\ (11.9) /(9.9) \\ \hline \end{array}$ |  |  |
|  | or Your Information <br> If there is such a thing as a stereotypical autu weather. Frost was not recorded at the climate rowing season lasted 133 days, 16 days more than han normal. Since 1964, the earliest fall frost occu maximum temperatures were unseasonably high with normal bright sunshine made finishing fall wo <br> With the passing of September, weather prognostic igh powered computers and sophisticated climate their lodges, to geese booking early travel plan more so than the woolly bear caterpillar. At a sightin brown stripes are narrower than the black, indicating | nn month, than ation until the normal. Grow red on August with 3 days abo k a pleasure ra <br> ators look for models, nature and squirrels g of the little be g a cold and b | his Septembe $9^{\text {th }}$. With the g degree-day , 1979 with th $30^{\circ} \mathrm{C}$. The er than a cho <br> mens indicatin provides the si ocking up extr sties, rulers and stery winter. | was it with its bright colours, ast spring frost occurring on M during the frost-free period wer e latest on October 6, 1987. Fro rest of the month's seasonable t re. Winds were relatively low th <br> a cold winter. For those who d igns. From beavers adding an e a winter food, all are noticed and and callipers are whipped out to d | ear days a $18^{\text {th }}$, the 1691.0; 34 the $3^{\text {rd }}$ to th mperatures ughout the <br> not have ra thick lay assessed termine wh | and warm frost-free 48.6 more the $8^{\text {th }}$, the s coupled e month. <br> access to yer of mud but none hether the $\qquad$ |
|  | 14 SaskPower <br> Saskatchewan and Rural Revitalization | Agriculture Agri-Food C |  |  | Kipp \& Zonen |  |



| Saskatchewan Research Council |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | November 2003 | $\begin{gathered} 2003 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | RMAL OR EXTREME FOR CRS <br> 1971-2000 (1961-90) | EXTREME FOR SASKATOON STATIONS |
|  | Average monthly maximum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average ( ${ }^{\circ} \mathrm{C}$ ) <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} \hline-3.7 \\ 5.4 / 16 \\ -13.8 \\ -24.4 / 22 \\ -8.8 \\ 30 \end{array}$ | $\begin{array}{r} 0.9 \\ 10.1 / 20 \\ -8.3 \\ -15.7 / 24 \\ -3.7 \\ 28 \end{array}$ | $\begin{array}{r} \hline-1.4(-1.5) \\ 19.4 / 1975 / 04 \\ -10.3(-10.6) \\ -33.5 / 1985 / 24 \\ -5.9(-6.0) \\ 29(29) \end{array}$ | $\begin{aligned} & 21.7 / 1903 / 03 \\ & -39.4 / 1893 / 30 \end{aligned}$ |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | $\begin{array}{r} 0.0 \\ 2019.5 \\ 804.0 \\ 4726.5 \\ 0.0 \\ 257.4 \end{array}$ | $\begin{array}{r} 0.1 \\ 1699.9 \\ 650.8 \\ 4963.1 \\ 0.0 \\ 227.9 \end{array}$ | $\begin{array}{r} 2.6(2.7) \\ 1672.8(1648.4) \\ 715.8(721.5) \\ 4821.1(4949.2) \\ 0.0(0.0) \\ 119.1(117.5) \end{array}$ |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 3.9 \\ 254.5 \\ 1.8 / 04 \\ 8 \end{array}$ | $\begin{array}{r} 3.7 \\ 306.1 \\ 1.4 / 08 \\ 7 \end{array}$ | $\begin{array}{r} 14.8(15.5) \\ 329.9(339.5) \\ 19.3 / 1978 / 04 \\ 8(8) \end{array}$ | 27.9/1938/01 |
| $\begin{array}{\|l} \hline 0 \\ 2 \\ 3 \end{array}$ | Average monthly speed (km/h) <br> Peak gust (speed/direction/date) | $\begin{array}{r} 12.7 \\ 50.1^{\mathrm{Nw} 05} \end{array}$ | $\begin{array}{r} 13.9 \\ \mathrm{Nw} 72.8 / 22 \end{array}$ |  | $\begin{array}{r} 16.0 \\ w_{1} 00.0 / 1976 / 17 \end{array}$ |
|  | Monthly bright sunshine (hours) <br> \% possible bright sunshine <br> \% normal bright sunshine <br> Bright Sunshine days <br> Monthly global radiation $\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$ <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 146.0 \\ 55.2 \\ 149.0 \\ 27 \\ 150.6 \\ 63.1 \end{array}$ | $\begin{array}{r} 95.4 \\ 36.1 \\ 23 \\ 114.7 \\ 64.5 \end{array}$ | $\begin{array}{r} 98.0(101.2) \\ 37.1(38.3) \\ \\ 22.2(22) \\ (123.7) \\ (73.6) \end{array}$ |  |
| 言 | Average grass level <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} -11.4 \\ -4.5 /-2.3 \\ 1.3 / 5.1 \\ 7.1 / 8.6 \\ \hline \end{array}$ | $\begin{array}{r} -2.3 /-0.9 \\ 1.3 / 4.4 \\ 6.0 / 7.6 \\ \hline \end{array}$ | $\begin{array}{r} -1.7 /-0.5 \\ 2.8 / 5.4 \\ 6.8 / 8.1 \\ \hline \end{array}$ |  |
|  | or Your Information <br> Cold and bright are the two best adjectives to ontributed the lion's share to the average month ays managed to struggle above freezing. Five of were unusually high despite six days where less $9 \%$ above normal for November. Unfortunately, elow normal upper soil temperatures reflected <br> November occasionally brings out the pessimist No warmth, no cheerfulness, no health No shade, no shine, no butterflies, no b No-vember. | describe Nov temperature those days o than one hour with the clear e cold air tem <br> s it did 200 ye ul ease, No co ees, No fruits $\mathrm{d}^{1}$ | mber 2003. T ing $3^{\circ} \mathrm{C}$ below rred mid-mo as recorded es, precipitation ratures while <br> s ago for Th fortable feel o flowers, no | $13.8^{\circ} \mathrm{C}$ average monthly m rmal. Every day recorded fr offering a welcome respite. th 146 hours recorded, the was minimal raising the yea lower soil temperatures w <br> s Hood, an English satirist. ny member, ves , no birds -- | imum temperature even though eight ght sunshine hours right sunshine was deficit to 75.4 mm . near normal. |
|  | 14 SaskPower Saskatchewan Agriculture, Food and Rural Revitalization | Agriculture Agri-Food | Agricultu Agroalim |  | Kipp \& Zonen |


| Saskatchewan Research Council Monthly Weather Summary |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | December 2003 | $\begin{gathered} 2003 \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} 2002 \\ \text { VALUE } \end{gathered}$ | NORMAL OR EXTREME FOR CRS <br> 1971-2000 (1961-90) | EXTREME FOR SASKATOON STATIONS |
|  | Average monthly maximum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly maximum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Average monthly minimum $\left({ }^{\circ} \mathrm{C}\right)$ <br> Extreme monthly minimum ( ${ }^{\circ} \mathrm{C} /$ date) <br> Monthly average $\left({ }^{\circ} \mathrm{C}\right)$ <br> No. of Frost days (Temperature $\leq 0^{\circ} \mathrm{C}$ ) | $\begin{array}{r} -3.0 \\ 6.6 / 20 \\ -12.6 \\ -25.6 / 11 \\ -7.8 \\ 31 \end{array}$ | -3.5 $5.5 / 13$ -11.9 $-27.2 / 03$ -7.7 31 | $-9.0(-9.8)$ $9.5 / 1987 / 07$ $-18.6(-19.3)$ $-42.2 / 1973 / 31$ $-13.9(-14.5)$ $31(31)$ | $\begin{gathered} 14.4 / 1939 / 05 \\ -43.9 / 1892 / 22 \end{gathered}$ |
|  | Monthly growing ( $5^{\circ} \mathrm{C}$ base) <br> Yearly total-to-date growing Monthly heating ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date heating Monthly cooling ( $18^{\circ} \mathrm{C}$ base) Yearly total-to-date cooling | 2019.5 800.7 5527.2 0.0 257.4 | $\begin{array}{r} 0.0 \\ 1699.9 \\ 797.8 \\ 5760.9 \\ 0.0 \\ 227.9 \end{array}$ | $\begin{array}{r} 0.1(0.0) \\ 1672.9(1648.4) \\ 987.7(1004.8) \\ 5808.8(5954.0) \\ 0.0(0.0) \\ 119.1(117.5) \end{array}$ |  |
|  | Monthly total (mm) <br> Yearly total-to-date (mm) <br> Greatest 24-hr (mm/date) <br> Measurable precipitation days ( $\geq 0.2 \mathrm{~mm}$ ) | $\begin{array}{r} 3.2 \\ 257.7 \\ 0.7 / 29 \\ 7 \end{array}$ | $\begin{array}{r} 13.9 \\ 320.0 \\ 9.5 / 29 \\ 11 \end{array}$ | $\begin{array}{r} 18.3(21.3) \\ 348.2(360.8) \\ 14.5 / 1973 / 23 \\ 11(12) \end{array}$ | 28.4/1936/02 |
| $\frac{0}{2}$ | Average monthly speed (km/h) Peak gust (speed/direction/date) | $\begin{array}{r} 12.2 \\ 54.1^{\text {SSE }} 05 \end{array}$ | $\begin{array}{r} 13.9 \\ 54.8^{\mathrm{SE}} 16 \end{array}$ |  | $\begin{array}{r} 16.0 \\ 121^{\mathrm{w}} 1955 / 12 \end{array}$ |
|  | Monthly bright sunshine (hours) \% possible bright sunshine <br> \% normal bright sunshine Bright Sunshine days <br> Monthly global radiation( $\mathrm{MJ} / \mathrm{m}^{2}$ ) <br> Monthly diffuse radiation ( $\mathrm{MJ} / \mathrm{m}^{2}$ ) | $\begin{array}{r} 113.6 \\ 46.9 \\ 133.0 \\ 25 \\ 96.8 \\ 43.3 \end{array}$ | $\begin{array}{r} 89.3 \\ 36.8 \\ \\ 23 \\ 91.2 \\ 47.9 \end{array}$ | $\begin{array}{r} 85.4(83.7) \\ 35.2(34.5) \\ \\ 22.8(23) \\ (95.2) \\ (54.3) \\ \hline \end{array}$ |  |
| 立 | Average grass level <br> temperature $\left({ }^{\circ} \mathrm{C}\right)$ $10 \mathrm{~cm} / 20 \mathrm{~cm}$ <br> @ 9:00am $50 \mathrm{~cm} / 100 \mathrm{~cm}$ <br>  $150 \mathrm{~cm} / 300 \mathrm{~cm}$ | $\begin{array}{r} -9.5 \\ -5.6 /-3.8 \\ -1.6 / 1.8 \\ 4.0 / 6.6 \\ \hline \end{array}$ | $\begin{array}{r} -4.5 /-3.1 \\ -1.3 / 1.9 \\ 3.7 / 6.0 \\ \hline \end{array}$ | $\begin{array}{r} (-6.5 /-5.5) \\ (-1.6 / 1.9) \\ (3.9 / 6.3) \\ \hline \end{array}$ |  |
|  | For Your Information <br> Dry, bright and warm describes December 20 December at the station since 1963. Only 1986 snow on the ground by month's end. Only 1978 113.6 hours; $33 \%$ above normal). The average year. The above $0^{\circ} \mathrm{C}$ temperature for Christmas he wind could make the month feel colder. Wind <br> Wind chill is the sensation of temperature felt by wind chill capital, while the mildest conditions ar are three notable exceptions. On Dec. $16^{\mathrm{th}}, 1964$ posted -57 C (with an air temperature of $-35.6^{\circ} \mathrm{C}$ ); Environment Canada, 2004. | 33. With only 8 mm ) and 1 14.4 hrs ) and aximum and was the ten above 50 km <br> he face caus found at Vict Edmonton, Calgary -55C | 2 mm recor 7 ( 1.2 mm ) 79 (118.2hrs) inimum tem and last occ were only re by wind. K al Although algary and $\left(33.9^{\circ} \mathrm{C}\right)$ and | d in seven precipitation even e drier. Christmas was very recorded more bright sunsh eratures were $6^{\circ} \mathrm{C}$ above no rence of such temperatures rded once on the fifth. <br> aaruk, Nunavut (formerly Pe nuary usually records the hig coria recorded their coldest ictoria, a bone chilling -25C | it was the $3^{\text {rd }}$ driest wn with only 4 cm of than this December and similar to last he month. Not even <br> Bay) is the national st wind chills, there d chills. Edmonton $\left..3^{\circ} \mathrm{C}\right) .{ }^{1}$ |
|  | 4 SaskPower Saskatchewan Agriculture, Food and Rural Revitalizatio Revitalization | Agriculture Agri-Food | Agricultu Agroalim | laire Canada |  |

## INSTRUMENTS USED AT SASKATOON SRC CRS AND GLOSSARY OF TERMS

(Unless otherwise stated, source for definitions of terms is Environment Canada, 1978)
BEAUFORT WIND SCALE was developed by Admiral Sir Francis Beaufort in 1805 and adopted by the British Navy in 1838. It consisted of 13 degrees of wind strength, from calm to hurricane, based upon the effects of various wind strengths upon the amount of canvas carried by the fully rigged frigates of the period. Over the years it has been modified as needed and in 1946 the scale values (Force Numbers) were defined by ranges of wind speed as measured at a height of 10 meters above the surface. In effect, this transformed the 'Beaufort Wind Force Scale' into the 'Beaufort Wind Speed Scale'. This scale is the current standard scale for visual observations of the wind (Heidorn, 1998).

BRIGHT SUNSHINE is the unobstructed direct radiation from the sun, as opposed to the shading of a location by clouds or by other atmospheric obstructions.
Number of Days is defined as the total number of days when at least 0.1 of an hour of bright sunshine was recorded.
Percentage Possible refers to the ratio of measured bright sunshine hours to the total possible daylight hours in a given period, expressed as a percentage.
Possible daylight hours are taken from the sunrise/set tables provided by the National Research Council of Canada, Herzberg Institute of Astrophysics, Victoria, BC.
Total is the sum of the daily bright sunshine values in hours and tenths of hours as measured by an automated sunshine recorder using voltaic cells.

DEGREE-DAY is an index for various temperature related calculations
Cooling (CDD) is the cooling requirement to achieve a stipulated comfort value in an indoor environment. For most purposes, a temperature of greater than $18^{\circ} \mathrm{C}$ is considered uncomfortable and supplementary cooling is required. On a specific day, the amount by which $18^{\circ} \mathrm{C}$ is less than the daily average temperature defines the number of cooling degree-days for that day.
Mathematically:
$\mathrm{CDD}=\left(\mathrm{T}-18^{\circ} \mathrm{C}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$ if T is equal to or less than $18^{\circ} \mathrm{C}, \mathrm{CDD}=0$.
Monthly and annual values of CDD are obtained by summing daily values.
Growing (GDD) is the growing requirement in order for plant growth to proceed. The air temperature must exceed a critical value appropriate to the plant species in question. For many members of the grass family, including most commercial cereals grown on the prairies, a base temperature of $5.0^{\circ} \mathrm{C}$ has been established. On a specified day, the difference between the daily average temperature and the $5.0^{\circ} \mathrm{C}$ base temperature defines the number of growing degree-days.
Mathematically:
GDD $=\left(\mathrm{T}-5.0^{\circ} \mathrm{C}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$ if T is equal to or less than $5.0^{\circ} \mathrm{C}, \mathrm{GDD}=0$.
Daily GDD values are summed to provide totals for the appropriate month, growing season or year.
Heating (HDD) is the heating requirement to achieve a stipulated comfort value in an indoor environment. For most purposes, a temperature of less than $18^{\circ} \mathrm{C}$ is considered uncomfortable and supplementary heating is required. On a specific day, the amount by which $18^{\circ} \mathrm{C}$ exceeds the daily average temperature defines the number of heating degree-days for that day.
Mathematically:
$\operatorname{HDD}=\left(18^{\circ} \mathrm{C}-\mathrm{T}\right)$, for that day, where $\mathrm{T}=$ daily mean temperature in ${ }^{\circ} \mathrm{C}$ if T is equal to or greater than $18^{\circ} \mathrm{C}, \mathrm{HDD}=0$.
Monthly and annual values of HDD are obtained by summing daily values.
EXTREME is the highest or lowest value of a particular element recorded during the period in question.

EXTREME ALL YEARS Temporal comparisons at a point are also of value in some types of climatic studies. Therefore, it is desirable to produce the maximum length of reliable climatic record to carry out studies over a period of time. Data are drawn from the following data sets:
Saskatoon, SRC:1963 to present
Saskatoon, University of Saskatchewan:1916 to 1963
Saskatoon, City: 1892 to present
Station locations, exposures and measurement procedures were subject to change during this time period. Data are not adjusted and users are cautioned accordingly.

FROST is recorded on each occasion when the daily minimum temperature is equal to or less than $0^{\circ} \mathrm{C}$.
NORMAL VALUE (1971-2000) In climatology it is often useful to make spatial comparisons of particular element values over a common time period. At an interior continental site such as Saskatoon, a period of 30 years is required to produce statistically stable estimates of the more variable elements. To facilitate spatial comparisons, the World Meteorological Organization recommends the standard normal (average) period of thirty years. The current normal period for data analysis is from January 1st, 1971 to December 31st, 2000. Data derived from CRS conform to this standard, except where noted. The normals for CRS have been calculated using the data collected during this standard period. Where gaps existed, data from the nearest climate station were used and referenced as to being used.

## PRECIPITATION

Day is recorded on occasions when the amount of precipitation in a 24 -hour period equals or exceeds 0.2 mm water. An asterisk (*) appearing in the average column denotes the occurrence of measurable precipitation on one or more occasions, and that the calculated 30-year average amounts to less than a trace. The so-called climatological day, beginning at 9 a.m. standard time on the date of reference and ending at 9 a.m. the next morning, was employed in record keeping up to January 1994. On February 1, 1994, after consultation with Environment Canada, record keeping was changed to the 24 -hour period of 0000 hours - 2400 hours to conform to their reporting of climatological statistics.
Total is the sum of the daily recorded precipitation. The snowfall component of precipitation is recorded as an equivalent amount of liquid water. For particulars on precipitation measurement procedures and instruments, the reader is referred to the Environment Canada publication "Manual of Climatological Observation's", 2nd Ed., January, 1978. The notation " $T$ " refers to a trace of precipitation (less than 0.2 mm water equivalent). As of August 7, 1993, total precipitation was measured using the Belfort weighing gauge for the winter season and the tipping bucket during frost-free period.

SOIL TEMPERATURE under a short grass surface with normal snow accumulation, is measured according to procedures outlined in the Environment Canada publication "Soil Temperature" January 1, 1976. Depths below surface at which soil temperature measurements are made are: $5 \mathrm{~cm}, 10 \mathrm{~cm}, 20 \mathrm{~cm}, 50 \mathrm{~cm}, 100 \mathrm{~cm}, 150 \mathrm{~cm}$ and 300 cm . Since soil temperature is affected by profile structure and water content, extrapolation of the measured data is difficult.

## SOLAR RADIATION

Diffuse - Total is radiation reaching the earth's surface after having been scattered from the direct solar beam. The instrument used is an Eppley pyranometer with a shade ring (See SOLAR RADIATION-Global- Total).
Global - Total is the sum of the direct solar and diffuse radiation during the period in question. Measurements are carried out on a horizontal surface near ground level and integrated over the whole celestial dome, summing the diffuse and direct components of the solar beam. The temperature-compensated Eppley pyranometer is used. The standard metric unit of measurement is the megajoule per square metre ( $\mathrm{MJ} / \mathrm{m}^{2}$ ). (To facilitate comparison with past years' data: $1.0 \mathrm{MJ} / \mathrm{m}^{2}=23.895$ langleys). Comparison is provided with a provisional average based on 16 years of data (1975-1990).

SPELLS - Temperature spells are defined as a sequence of days when the daily maximum temperature is higher than or equal to $30^{\circ} \mathrm{C}$ (hot spell) or the daily minimum temperature is lower than or equal to $-30^{\circ} \mathrm{C}$ (cold spell).

SUNRISE/SUNSET times have been included in this report. They have been acquired from the National Research Council, Canada, Herzberg Institute of Astrophysics.

## TEMPERATURE

Average Annual is the average of the daily average temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ for one year.
Average Daily is defined as the arithmetic mean of the daily maximum temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ and the daily minimum temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ for the day in question.
Average Maximum is the average of the daily maximum temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ average over the appropriate time periods. For details concerning measurement procedures, the reader is referred to the Environment Canada publication, "Manual of Climatological Observations", 2nd Ed., January, 1978.
Average Minimum is the average of the daily minimum temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ averaged over the appropriate time periods. Refer to TEMPERATURE-Average Maximum concerning measurement procedures.
Average Monthly is the average of the daily average temperatures in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ for the month under consideration.

WIND CHILL describes a sensation, the way we feel as a result of the combined cooling effect of temperature and wind. This feeling can't be measured using an instrument, so a mathematical formula was developed in 1939 that related air temperature and wind speed to the cooling sensation. This formula was revised in 2001 by a team of scientists and medical experts from Canada and the U.S. with the Canadian Department of National Defence contributing human volunteers. The new index is based on the loss of heat from the face (Environment Canada 2001a).

## WIND SPEED

Average is the average of the hourly wind speeds for the period in question measured in kilometres per hour (km/h). Average hourly wind speeds are obtained from a RM Young Wind Monitor anemometer at a height of 10 m .

Peak Gust refers to the highest instantaneous value recorded by the anemometer system for the period of reference, irrespective of direction and/or duration. Comparison is with published data for Environment Canada, Saskatoon Airport station.

## see also Beaufort Wind Scale

## REFERENCES AND BIBLIOGRAPHY

American Automobile Association, 1996. 1996 AAA Road Atlas. American Automobile Association, Florida, USA.
Canadian Geographic, 2000. Enlightening Times In: Lightning Nature's High-voltage Fury. http://www.cangeo.ca /JA00/ lightning/lightning_main.htm (accessed July 26, 2001).

Christiansen, E.A. (Ed.), 1970. Physical Environment of Saskatoon, Canada. Saskatchewan Research Council, Saskatoon, SK, in cooperation with National Research of Canada, Ottawa, ON.

Environment Canada, Atmospheric Environment Service (AES). 1975. 1974 Annual Meteorological Summary, Saskatoon, Saskatchewan. AES, Downsview, ON.

Environment Canada, Atmospheric Environment Service (AES). 1978. Manual of Climatological Observations, 2nd Ed. AES, Downsview, ON.

Environment Canada, Atmospheric Environment Service, (AES). 1992. AES Guidelines for Co-operative Climatological Autostation. Environment Canada, Downsview, ON.

Environment Canada, Atmospheric Environment Service (AES). 1993. Canadian Climate Normals 1961-1990. Canadian Climate Centre, Downsview ON.

Environment Canada, Meteorological Service of Canada, 2001a. Canada's New Wind Chill Index. Minister of Public Works and Government Services Canada, Ottawa, ON.

Environment Canada, Meteorological Service of Canada, 2001b. Wind Chill Calculation Chart. http://www.msc.ec.gc.ca/ windchill/Chart_chill_e.jpg (accessed Oct 24, 2001).

Environment Canada, Meteorological Service of Canada, 2002a. Annual Meteorological Summary, Saskatoon International Airport, 2001. Environment Canada, Edmonton, AB.

Environment Canada, Meteorological Service of Canada, 2002b. Canadian Daily Climate Data on CD-ROM - Western Canada. Climate and Water Products Division, Downsview, ON.

Environment Canada, Meteorological Service of Canada, 2003. Monthly Weather Statistics for June 2003 for Major Sites in Prairie and Northern Region. Environment Canada, Edmonton, AB.

Environment Canada, Meteorological Service of Canada, 2004. Canadian Wind Chill Records. http://www.msc.ec.gc.ca/ education/windchill/windchill_records_e.cfm (August, 2004).

Goble, R. J., 2002. Volcanoes. In: Introduction to Geology/Physical Geology. http://www.class.unl.edu/geol100/ Review2.html (accessed June, 2002)

Heidorn, K. 1998. The Weather Legacy of Admiral Sir Francis Beaufort In: Weather People and History. http:// irishculture.about.com/gi/dynamic/offsite.htm?site=http://www.islandnet.com/\%7Esee/weather/history/ beaufort.htm (accessed July 30, 2001).

Inwards, R. 1994. Weather Lore; A Collection of Proverbs, Sayings \& Rules Concerning the Weather. Senate, London, England.

National Research Council of Canada, Herzberg Institute of Astrophysics, n.d. Sunrise - Sunset Tables for Saskatoon http://www.hia.nrc.ca/services/sunmoon/sunmoon.html (accessed Dec, 2003).

Olm, O., 2001. Personal Communication. September 17, 2001. Saskatchewan Research Council, Saskatoon, SK.
Phillips, D.W., 1993. The Day Niagara Falls Ran Dry!: Canadian Weather Facts and Trivia. Key Porter Books Ltd., Toronto, ON.

Phillips, D.W. 1996. Weather Flashes. Fifth House Ltd., Calgary, AB.

Phillips, D.W. 1998. Blame it on the Weather: Strange Canadian Weather Facts. Key Porter Books, Ltd., Toronto, ON.
Phillips, D.W. 2000. 2001 Canadian Weather Trivia Calendar. Fifth House Ltd., Calgary, AB.

Phillips, D.W. 2002. 2003 Canadian Weather Trivia Calendar. Fifth House Ltd., Calgary, AB.
Saskatchewan Agriculture, Food and Rural Revitalization (SAFRR), 2003. Crop Report. Number 17, July28, 2003. Saskatchewan Agriculture, Food and Rural Revitalization, Regina, SK.

Thoen, 2001. Origin of the Compass Rose. http://www.gisnet.com/notebook/comprose.htm. (accessed) February 06, 2004)
U.S. Geological Survey. Cascades Volcano Observatory, n.d. Deadliest Volcanic Eruptions Since 1500 A.D. http:// vulcan.wr.usgs.gov (accessed March 27, 2002)

World Meteorological Organization (WMO). 1988. Technical Regulations: General Meteorological Standards and Recommended Practices, 1988 ed., Suppl. No. 2 (IV. 1996), WMO - No. 49. Geneva, Switzerland.


[^0]:    ${ }^{1}$ Christiansen 1970; Environment Canada 1975

[^1]:    Source: Environment Canada, 2001b

